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Upon repetitively performing the same well-practiced task on identical bottom-up stimuli, our performance still varies. Although it has
been well documented that elevated pre-stimulus baseline activity in the human default-mode network impairs the subsequent task
performance, it remains unknown (i) the fine-grained temporal dynamics and (ii) whether the underlying neural dynamics are supra-
modal or modality-specific. We utilized intracranial recordings in the human posteromedial cortex (PMC) during a simple visual and an
auditory detection task. Our findings suggested that the pre-stimulus gamma power in PMC predicted the subsequent task performance.
Critically, the higher the pre-stimulus gamma power, the longer it took for it to be suppressed, and the less suppressed it was during the
task performance, which eventually resulted in deleterious effects on task performance, i.e. longer reaction times. These fine-grained
temporal dynamics were consistent between the visual and auditory simple detection task. In addition, a direct comparison between
the visual and auditory modality showed that the between-modality difference emerged during the recovery period from the maximal
gamma suppression back to the baseline. Taken together, the present results contribute novel spatio-temporal mechanisms in human
PMC on how simple detection performance varies across multiple repetitions, irrespective of the sensory modality involved.
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Introduction
Our brain does not guarantee stable performance upon repet-
itively performing the same well-practiced behavioral task
on the identical bottom-up inputs. Instead, task performance
varies on a moment-to-moment basis, e.g. occasionally delayed
responses and behavioral errors. The default mode network
(DMN) comprises a distributed set of brain regions with high pre-
stimulus baseline activity that is suppressed during engagement
of the variety of externally goal-directed tasks (Raichle et al. 2001;
Raichle and Gusnard 2005; Lachaux et al. 2008; Hayden et al. 2009;
Miller et al. 2009; Jerbi et al. 2010; Jung et al. 2010; Dastjerdi et al.
2011; Ossandón et al. 2011; Foster et al. 2012; Fox et al. 2018).
Importantly, both the magnitude and the duration of the task-
induced DMN suppression correlate with task complexity and
performance: the more complex the externally directed tasks, the
slower the reaction times (RTs), and the longer and the deeper
DMN suppression (Shulman et al. 1997; McKiernan et al. 2003;
Ossandón et al. 2011; Foster et al. 2012). Therefore, the task-
induced DMN deactivation does not simply represent the relative
silencing of a task-irrelevant network, but instead might be an
active process of functional suppression important for successful
task performance (Fox et al. 2018). On the other hand, the pre-
stimulus baseline activity is frequently referred to as background
activity because it is not related to the sensory or motor aspects
of the task. Thus, it is often subtracted from the measured neural

signals during the task, on the assumption that it represents
neural activity noise. However, elevated DMN baseline activity,
prior to the actual onset of the behavioral targets, predicts
poor task performance, such as occasional lapses in attention
(Weissman et al. 2006; Hayden et al. 2009; Kucyi et al. 2020), and
failures in perceiving near-threshold somatosensory stimuli (Boly
et al. 2007). Therefore, rather than merely reflecting the noise in
the system, the baseline signal reflects the cortical manifestation
of vigilance state, motivational, or arousal pathways, which
determine the efficiency of cortical sensorimotor processing and
the quality of the task performance (Zhang et al. 2014).

Although both increased pre-stimulus activity and alleviated
task-induced suppression in the DMN have been associated with
deteriorating task performance (Weissman et al. 2006; Ossandón
et al. 2011; Kucyi et al. 2020), it remains completely unknown
how variation in pre-stimulus baseline activity translates to the
varying extent of the subsequent task-induced suppression, along
both the temporal and the amplitude dimension, which eventu-
ally alters behavior. Taking advantage of the high temporal resolu-
tion of intracranial electroencephalography (iEEG) in patients with
drug-resistant epilepsy and a relatively adequate electrode cover-
age in the human posteromedial cortex (PMC), a core hub of the
DMN, we aimed to investigate the moment-to-moment variation
in neuronal activity from the pre-stimulus to the post-stimulus
period, which correlates with the varying behavioral performance
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Fig 1. Stimuli, localization of PMC electrode sites, and behavioral performance. (a) There were three types of targets: the unimodal auditory target, the
unimodal visual target, or the bimodal audiovisual targets. In each trial, the target was presented for 50 ms, and the subjects were instructed to press
one response button if they heard the auditory target, press the other response button if they saw the visual target, and press both buttons if they
both saw and heard. And the interval was 2500–2900 ms. Only the two types of unimodal trials were analyzed in the present study. (b) Anatomical
and functional locations of the PMC electrodes. The upper panels: all the cortical electrodes falling in the anatomically defined PMC area (shaded in
blue) in the 19 participants were projected onto the fsaverage standard space. The red circles represent the functionally responsive electrodes that
showed a significant decrease in the gamma power after the target onset, compared with the pre-stimulus baseline, and the white circles represent
the non-responsive electrodes. The bottom panels: the time-frequency diagrams show the typical electrophysiological activations in one representative
responsive and non-responsive electrode, respectively. (c) Within each type of unimodal trials, the trials were classed into the fast vs. slow trials based
on the median of the RTs. (d) Mean RTs of the unimodal visual vs. auditory trials are shown as a function of the fast vs. slow conditions. The error bars
indicate the standard error of the mean. ∗∗∗P < 0.001.

upon performing the same behavioral task on identical bottom-
up inputs. According to previous evidence (Weissman et al. 2006;
Hayden et al. 2009; Kamp et al. 2018; Kucyi et al. 2020), we hypoth-
esized that the magnitude of pre-stimulus baseline gamma band
power in the PMC electrodes should predict the subsequent task
performance. More critically, we aimed to investigate how the
pre-stimulus baseline gamma power determines the quality of
task-induced suppression in PMC, in terms of both the magnitude
and the latency. We predicted that elevated pre-stimulus baseline
gamma power in PMC will result in delayed and alleviated task-
induced suppression, and accordingly slower RTs.

In addition, due to differential neuronal properties in the
visual vs. auditory pathway (Marshall and Talbot 1942; Kemp
Jr et al. 1973; King 2005a), even simple RTs in detection tasks
differ between the visual and the auditory stimuli (Dunlap and
Wells 1910; Jose and Gideon Praveen 2010). Although the DMN is
generally deactivated both during the visual and auditory tasks
(Daselaar et al. 2010; Huijbers et al. 2011; Humphreys et al. 2015), it
remains unclear (i) whether the fine-grained temporal dynamics
of task-induced neural deactivations in the DMN are modality-
independent or -specific, and (ii) how the potential between-
modality differences vary when the task performance is matched
vs. unmatched between the visual and auditory modality. To
further answer these questions, we adopted a simple visual or
auditory detection task (Fig. 1a). The participants were instructed

to simply detect the appearance of a supra-threshold target
delivered either in the auditory or the visual modality.

Materials and methods
Ethics and participants
The data were collected from 19 patients (mean age ± SD,
23.78 ± 3.41 years; 13 male and 6 female) with drug-resistant focal
epilepsy undergoing neurosurgical treatment. The patients were
implanted with depth electrodes which were placed within one
or both hemispheres. The electrodes were not implanted for the
purposes of this study, but only as part of a pre-surgical evaluation
to help localize the seizure onset zone. After implantation, the
patients were monitored for about two weeks in their hospital
rooms. During this period of time, we administered the cognitive
task. All the subjects provided written informed consent to
participate in the study, and the Ethics Committee of South China
Normal University approved all the procedures.

Stimuli and experimental design
There were two types of target stimulus in the experiment: a 4000-
Hz pure tone as the auditory target; and a yellow circular stimulus
of 1.5◦ visual angle at the center of the screen as the visual target.
The default visual display was a white central fixation cross that
measured 1◦ × 1◦ of visual angle on a black background. The

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad083/7081422 by guest on 23 M

arch 2023



Jie Ma et al. | 3

Table 1. Demographics and electrode distribution in each patient.

ID Sex Age L/R handed Epilepsy
duration

Ictal or inter-ictal Task blocks PMC responsive
sites

1 Female 21 R 9 years Bilateral hippocampus 30 3
2 Male 31 L — Left lateral sulcus 62 4
3 Female 23 R 11 years Left insula and temporal lobe 64 9
4 Male 22 R 2 years Right intraparietal sulcus and middle temporal area 73 13
5 Male 24 R 18 years Right cuneus and lingual gyrus 35 3
6 Male 18 R 14 years Right temporal lobe 15 5
7 Male 23 R 15 years Left insula and temporal lobe 18 4
8 Male 28 R 20 years Left intraparietal sulcus and temporal lobe 76 4
9 Male 23 Bi 12 years Left superior temporal lobe 76 5
10 Male 21 R 1 years Right orbitofrontal region 64 2
11 Female 22 R 5 years Left insular and supramarginal gyrus 72 3
12 Male 26 R 6 years Right orbitofrontal region and temporal pole 64 3
13 Male 27 R 23 years Right insula and temporal lobe 17 5
14 Male 27 R — Bilateral parieto-occipital regions 30 12
15 Female 29 R 21 years Left medial temporal lobe 15 2
16 Male 21 Bi 5 years Left medial temporal lobe 32 1
17 Female 26 R 12 years Right medial temporal lobe 18 5
18 Female 20 R 5 years Right inferior temporal lobe 18 2
19 Male 20 R 11 years Right central sulcus 18 4

L: left, R: right, Bi: bilateral, —: information missing.

inter-trial interval (ITI) was randomized from 2500 to 2900 ms (i.e.
2500, 2600, 2700, 2800, and 2900 ms). There were three types of
trials: (i) the unimodal auditory trials, in which the auditory target
was presented for 50 ms; (ii) the unimodal visual trials, in which
the visual target was presented for 50 ms; and (iii) the bimodal
audiovisual trials, in which the visual and auditory targets were
simultaneously presented for 50 ms (Fig. 1a). Participants were
instructed to press one response button if they saw the visual
target, press the other response button if they heard the auditory
target, and press both buttons if they both saw and heard. The
mapping between the auditory and the visual targets and the
two response keys was counterbalanced within each subject. The
experiment was scripted and run by Presentation software (Neu-
robehavioral Systems, RRID: SCR_002521, https://www.neurobs.
com/). The auditory target was delivered via loudspeakers placed
behind the computer monitor. The visual target was presented on
a 23-inch screen (resolution, 1920 × 1080) that positioned ∼ 60 cm
from the patients at the eye level.

The experiment was administered in multiple blocks for
each patient. The number of blocks obtained from each patient
depended on the amount of time available for research recording
in the clinical environment, which varied across patients (please
see Table 1 for the number of blocks obtained from each patient).
There were 50 trials in each block, among which the proportion
of visual, auditory, and audiovisual trials was 2:2:1. In the present
study, we were only interested in the single modality visual and
auditory trials.

Acquisition and preprocessing of the intracranial
data
The intracranial EEG (iEEG) recordings were made at the bed-
side of the subjects’ private clinical room. Data were recorded
using the clinical monitoring system from Nihon Kohden (Tokyo,
Japan) with a sampling rate of 1000 Hz and a band-pass filter of
1–300 Hz. The diameter of each electrode was 0.8 mm, and the
inter-electrode spacing was 1.5 mm. The neuroanatomical targets
and numbers of electrodes implanted in each subject varied
exclusively according to clinical requirements.

Data analysis was performed using Fieldtrip toolbox
(RRID: SCR_004849, http://www.fieldtriptoolbox.org/, Oosten-
veld et al. 2011) implemented in MATLAB 2021a (MathWorks,
RRID: SCR_001622, https://www.mathworks.com/products/matlab.
html). For the offline analyses, the recorded signals were first
down-sampled to 500 Hz. Subsequently, notch filtering (zero-
phase, third order, Butterworth filter with band-stop within 47–53,
97–103, and 147–153 Hz) was performed to remove the power line
noise. Each electrode was re-referenced with respect to its direct
neighbor, i.e. bipolar montage. As we were interested in both the
pre- and the post-stimulus phase, we need to make sure that the
pre-stimulus phase of each trial epoch was not contaminated by
the manual response of the previous trial, and in the meanwhile
keep the pre-stimulus epoch as long as possible. In this study,
the ITI between the presentation of the target stimuli in two
consecutive trials was jittered from 2500 to 2900 ms in a 100-ms
step (i.e. 2500, 2600, 2700, 2800, and 2900 ms), with the minimum
ITI being 2500 ms. To achieve a clean pre-stimulus period without
contaminations from the response of the previous trial, the RT
of the current trial plus the duration of the pre-stimulus epoch
should be less than the minimum ITI (i.e. 2500 ms). In the current
analyses, we aimed to get a long enough and clean pre-stimulus
phase of 1000 ms. Accordingly, the slowest RT of the previous
trial has to be “the minimum ITI (2500 ms) - the desired duration
of the pre-stimulus epoch (1000 ms)” = 1500 ms. We thus further
excluded the correct trials (5%) with RTs longer than 1500 ms from
further analyses. Subsequently, the continuous EEG data were
segmented into epochs of 3 s, including 1 s before and 2 s after the
stimulus onset. After that, the artifact rejection was performed
in two steps. First, we applied the methods implemented in the
MATLAB-based LBCN preprocessing pipeline (https://github.com/
LBCN-Stanford/Preprocessing_pipeline), consistent with previous
work (Foster et al. 2012; Kucyi et al. 2020), to reject the bad
channels and trials. After that, noisy trials were excluded via
visual inspections, which were done blindly irrespective of the
experimental conditions.

Time-frequency transformation was performed for each trial
using the complex Morlet wavelets with frequencies of interest
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between 1 and 200 Hz, in 2-Hz steps. We used wavelet kernels
with a variable number of cycles, which linearly increased from
3 to 20 cycles. As we were interested in the pre-stimulus baseline
activity, no baseline correction was applied to the data. Instead,
we z-transformed (i.e. normalized) the iEEG power data within
each frequency and each channel for the auditory and the visual
trials, respectively, to address the band-specific 1/f drop of the
power spectrum (Miller et al. 2007). Specifically speaking, within
trials of each modality, the power of each trial was first subtracted
by the mean of the grand average of all trials across the epoch
time, and then divided by the standard deviation across the epoch
time of the grand average of all trials. The z-transformation was
applied to all the trials of the same modality, irrespective of the
RTs, and thus this normalization does not affect the difference in
pre-stimulus gamma power between fast and slow trials. Further
data analyses were based on the normalized data, except for
the direct comparison between the visual and auditory trials via
which we were most interested in the post-stimulus task-induced
deactivation. In the latter case, the data analyses were based on
the baseline-corrected data: the power spectrum was converted
to z-scores using the mean and the standard deviation of the pre-
stimulus baseline time window (−1 to −0.1 s).

Localization and visualization of electrodes
Anatomical locations of electrodes were determined via the co-
registration between the pre-implantation MRIs and the post-
implantation CTs. The registered images were carefully visually
checked to ensure adequate registrations. The anatomical loca-
tions of electrodes were then labeled by the method implemented
in SEEGA (Narizzano et al. 2017) and plotted using 3D slicer (RRID:
SCR_005619, https:www.slicer.org). To identify the anatomical
structure of each electrode, we processed and reconstructed the
structural MRI of each subject using Freesurfer v6.0.0 (recon-all
command) (RRID: SCR_001847, https://surfer.nmr.mgh.harvard.
edu/fswiki/FreeSurferWiki, Fischl et al. 2002). The anatomical
structures were labeled according to the FreeSurfer Desikan–
Killiany atlas (Desikan et al. 2006) using automatic subcortical
segmentation and surface parcellation based on gyri and sulci.
The PMC area was anatomically defined here as the posterior
cingulate cortex, the precuneus cortex, and the isthmus-cingulate
cortex. All the electrodes that fall in the above anatomically
defined PMC area were first selected.

Furthermore, the electrophysiological signature of the DMN
can be effectively represented by the deactivation of gamma
power during externally oriented cognitive tasks (Lachaux et al.
2008; Miller et al. 2009; Jerbi et al. 2010; Dastjerdi et al. 2011;
Fox et al. 2018). Therefore, we expected to observe a significant
task-induced gamma deactivation for the functionally involved
PMC electrodes during the performance of the current task. We
adopted the Wilcoxon signed-rank test to compare the mean
gamma power during the post-stimulus period (0 to 1 s) vs. the
pre-stimulus baseline period (−1 to 0 s). Based on this procedure,
we functionally selected the PMC electrodes which showed sig-
nificant task-induced deactivation in gamma power during the
post-stimulus period, compared with the pre-stimulus baseline.
Only the functionally selected PMC electrodes were entered into
further analyses.

To further characterize the anatomically and functionally
selected PMC electrodes, a coherence analysis was performed
to estimate the degree of signal independence. Specifically, the
time series of gamma power during each trial (−1 to 2 s) was
first extracted and then joined together for each electrode. A
Spearman correlation analysis was then performed on the joined

time series between each pair of electrodes within each subject.
The percentage of significantly and positively correlated electrode
pairs was used to characterize the signal independence between
the selected PMC electrodes.

For visualization purposes, we projected each patient’s elec-
trodes to a standard Montreal Neurologic Institute (MNI) reference
brain, to get the MNI coordinates of all electrodes. Using iELVis
(RRID: SCR_016109, http://ielvis.pbworks.com, Groppe et al. 2017),
the MNI coordinates of all the anatomically and functionally
localized PMC electrodes were projected to fsaverage standard
space for visualization purposes (Fig. 1b).

Analysis of behavioral data
For the single modality auditory and visual trials, error trials,
including behaviorally missed trials (2%) and incorrect responses
(3%), were excluded from further analysis. Additionally, correct
trials with RTs longer than 1500 ms (5%) were excluded from
further analyses on RTs, to allow for an adequately long pre-
stimulus period for the analysis of neural data. Further, among
the correct trials, the outlier trials (1%) with RTs outside the
range of mean RTs ± 3 SD in each condition were also excluded
from further analyses on the RTs. The remaining correct trials
(without errors, outliers, and correct trials with RTs longer than
1500 ms) in each modality were then split into the fast and slow
conditions according to the median RT in the visual and auditory
trials, respectively (Fig. 1c). Mean RTs were then submitted to a
2 (sensory modality: visual vs. auditory) × 2 (response speed: fast
vs. slow) repeated measures ANOVA. Planned paired t-tests (with
Bonferroni correction) were used to test the simple effects in case
the interaction was significant.

Analysis of neural data
The effect of pre-stimulus power in DMN. To investigate how the
pre-stimulus power predicted the subsequent task performance,
we performed two steps of analyses. First, by treating the vari-
ance of task performance as a dichotomous variable, we directly
compared the temporal dynamics of neurophysiological signals
between the fast and slow trials. Second, by treating the vari-
ance of task performance as a continuous variable, in terms of
moment-to-moment variance in RTs, we further correlated the
pre-stimulus power in the DMN with the subsequent RTs in each
trial (bin). Specifically speaking, within each sensory modality, we
first compared the power spectrum of the fast vs. slow trials, using
a non-parametric cluster-based permutation test that corrects
for multiple comparisons. In this way, we were able to identify
the differences in the power spectrum between the fast and the
slow trials, both during the pre-stimulus and the post-stimulus
periods. To further demonstrate the temporal dynamics of the
electrophysiological responses in DMN during the fast vs. slow
trials, we averaged the power across the gamma frequencies (30–
200 Hz) and the alpha frequencies (8–12 Hz) for the fast and
slow trials, respectively. To avoid the problem of double dipping
(Kriegeskorte et al. 2009, 2010), no further statistical analysis was
performed on the temporal profile of gamma and alpha between
the fast and slow trials. Further, we adopted the linear mixed
model (LMM) to test the correlation between the pre-stimulus
gamma power in the DMN and the trial-by-trial variance in RTs.
The pre-stimulus gamma power was calculated as the mean
power within the cluster which showed significant differences
in the gamma (30–200 Hz) power between the fast and the slow
trials during the pre-stimulus period. In the LMM, subjects were
entered as a random factor, the pre-stimulus gamma power was
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entered as a fixed factor, and the RTs were entered as the depen-
dent variable. To better illustrate the correlation results, for each
subject, we first sorted the trials in the ascending order based
on the pre-stimulus gamma power, and then grouped every 10
trials into a trial bin along the continuum of the pre-stimulus
gamma power. As the number of trials in each subject varied,
the resulted number of trial bins varied across subjects (13–140
trial bins). Subsequently, the correlation coefficient between the
pre-stimulus gamma power and the RTs was computed for each
electrode, based on the merged trial-bin data.

To further investigate how the pre-stimulus gamma power
modulated the post-stimulus task-induced deactivation in the
gamma power, we calculated the post-stimulus trough gamma
power latency and power. We adopted a method on identifying the
task-induced maximal gamma suppression in the DMN similar to
that employed in prior research (Kucyi et al. 2020). Specifically, the
maximal suppression was defined as the lowest gamma power,
and the maximal suppression latency was defined as the time
interval between the time point of stimulus onset and the maxi-
mal gamma suppression, within a time window of 0–2 s after the
stimulus onset. We used paired t-tests to test whether there was a
significant difference between the fast and slow trials, in terms of
the maximal suppression latency and the maximal suppression
power of the post-stimulus task-induced gamma deactivation.
Furthermore, the correlations between the pre-stimulus gamma
power and the post-stimulus trough gamma latency and power
were calculated via the LMM, respectively. In the LMM, subjects
were entered as a random factor, the pre-stimulus gamma power
was entered as a fixed factor, and the latency and the power of
the maximal gamma suppression were entered as the dependent
variable, respectively. Correlation analyses for each electrode were
also carried out based on the merged trial-bin data.

Modality-specific mechanisms in the DMN. To further investigate
the sensory modality difference in the post-stimulus DMN
responses, we directly compared the time course of the gamma
power in DMN between the visual and the auditory trials. As the
auditory responses were slower than the visual responses in the
present study, task difficulty could be a potential confounding
factor here. As the auditory responses were slower than the
visual responses only in the slow trials, but not in the fast
trials, we further compared the visual and auditory processing
within the faster and the slow trials, respectively. To further
prove the consistency of the results, we categorized the subjects
into the response matched and the response unmatched groups,
according to the group mean RT difference between the visual
and auditory trials across all the subjects. The group mean
RT difference was 17 ms, and we rounded it up to 20 ms as a
cutoff to categorize the subjects. The subjects, whose absolute
RT difference between the visual and auditory trials was less
than 20 ms, were categorized as the response matched group (8
subjects), and the rest of the subjects as the response unmatched
group (11 subjects).

Statistical analysis
A non-parametric statistical test based on the cluster-level per-
mutation was used to statistically compare the power spectrum
and the temporal profile of the gamma power between the fast
and slow conditions (Maris and Oostenveld 2007). The cluster-
based permutation identifies patterns of oscillatory neural activ-
ity and appropriately deals with the multiple comparisons prob-
lem. Specifically, every sample between conditions was compared
by a paired-samples t-test, and the samples were selected if their
statistical value was more significant than a threshold (P = 0.05,

two-tail) and combined into clusters based on adjacency. The
t-values within each cluster were summed up as the cluster-level
statistics. The random permutation of data was then performed
by exchanging the data between conditions across electrodes.
The permutation was performed 1000 times (i.e. 1000 random
partitions) and the maximum cluster-level statistic was recorded
in each permutation run, which resulted in a distribution of the
cluster-level test statistic based on the 1000 permutations. The
corrected P-value was computed by calculating the proportion of
random partitions that exceeded the observed (true) test statistic.
The clusters in which the summed t-values exceeded 95% of the
distribution of surrogate clusters (corresponding to a corrected
P < 0.05) were considered as significant.

We adopted the LMM to calculate the relationship between
the pre-stimulus gamma power of the DMN, the subjects’
behavioral performance, the post-stimulus trough gamma
latency and power in the DMN. The LMM analyses allow to
control for data-dependencies within a subject (Baayen et al.
2008). In the current study, the LMMs were computed with
the lme4 package (RRID: SCR_015654, https://cran.r-project.org/
web/packages/lme4/index.html, Baayen et al. 2008; Bates et al.
2015), and the P-values were obtained via the lmerTest package
(RRID: SCR_015656, http://CRAN.R-project.org/package=lmerTest,
Kuznetsova et al. 2017) implemented in R. The data were fitted
with a random intercept model with the relevant fixed factors and
a random factor of subjects. The pre-stimulus gamma power was
entered as a fixed factor, the subjects were entered as a random
factor, and the predicted variable (i.e. the RTs, or the power or
latency of the maximal gamma suppression) was entered as the
dependent variable. The coefficients of the LMMs were used to
represent the correlation between the predictors and the outcome
variables. For each LMM, the significance of the pre-stimulus
gamma power in predicting each variable was assessed with the
significance level at 0.05.

Results
Behavioral results
The accuracy in the visual (mean ± SD, 94 ± 4%) and auditory
(96 ± 4%) trials was both around 95%, indicating that the present
supra-threshold stimulus detection task was easy enough for both
sensory modalities.

The mean RTs were submitted to a 2 (sensory modality: visual
vs. auditory) × 2 (response speed: fast vs. slow) repeated-measures
ANOVA. The main effect of sensory modality was significant,
F(1,18) = 4.20, P = 0.05, η2 = 0.19, indicating that the mean RTs to the
auditory targets (mean ± SE, 703 ± 40 ms) were slower than to the
visual targets (686 ± 42 ms). The main effect of response speed
was significant as well, F(1,18) = 146.04, P = 4.51 × 10−10, η2 = 0.89.
Moreover, the interaction between sensory modality and response
speed was also significant, F(1,18) = 16.67, P = 0.001, η2 = 0.48. Fur-
ther planned paired t-tests on simple effects showed that the
visual (557 ± 33 ms) and auditory (556 ± 30 ms) RTs were com-
parable for the fast trials, t(18) = 0.21, P = 0.83, d = 0.01, whereas the
visual responses (814 ± 52 ms) were significantly faster than the
auditory responses (850 ± 52 ms) for the slow trials, t(18) = −3.12,
P = 6.42 × 10−3, d = −0.16 (Fig. 1d).

Please note, the above behavioral results were based on all the
correct trials with RTs faster than 1500 ms for the purposes of ana-
lyzing the pre-stimulus period of the neural data (see Methods). If
we included the correct trials with RTs longer than 1500 ms in the
analysis of the behavioral data, consistent patterns were revealed
(Supplementary Fig. 1), indicating that removing the correct trials
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with RTs longer than 1500 ms did not dramatically alter the
behavioral results.

Neural results
A total of 181 electrodes from 19 patients with drug-resistant
epilepsy were anatomically localized in the PMC, a core hub
of the DMN (see Methods). The PMC electrodes with patholog-
ical artifacts were removed via a semi-automatic method (see
Methods), leaving 116 PMC electrode sites without visible phys-
iological signal contaminations. Furthermore, the classical elec-
trophysiological profile of the DMN is characterized by the task-
induced suppression in the high gamma power (Lachaux et al.
2008; Miller et al. 2009; Jerbi et al. 2010; Dastjerdi et al. 2011; Fox
et al. 2018). Therefore, among the 116 anatomically localized and
artifacts free PMC electrodes, we further functionally localized
89 electrodes which showed significant task-induced gamma (30–
200 Hz) power deactivation during the post-stimulus period (0 to
1 s), compared with the pre-stimulus baseline (−1 to 0 s). As shown
in Fig. 1(b), the red circles are the electrodes with the gamma
deactivation, and the white circles are the electrodes without
the gamma deactivation. The 89 anatomically and functionally
localized PMC electrodes were then included in the following
analyses. By correlating all electrode pairs in the same subject,
we found that the gamma activity of the selected electrodes
in the PMC was highly consistent, with 93% of the electrode
pairs having a significant positive correlation (see Supplementary
Fig. 2).

Pre-stimulus baseline gamma power predicted
both magnitude and latency of task-induced
deactivation in PMC, irrespective of the sensory
modality involved
First, differences in the normalized iEEG power spectrum between
the fast and the slow trials were calculated for the visual
and the auditory modality, respectively. For the auditory trials,
two significant high frequency clusters, covering both the pre-
stimulus and the post-stimulus periods, showed significantly
lower gamma power in the fast trials than in the slow trials,
P = 0.001, cluster-based permutation (Fig. 2a). In addition, a
significant low frequency pre-stimulus cluster, centering at the
alpha-band (8–12 Hz), showed significantly higher power in
the fast trials than in the slow trials, P = 0.001, cluster-based
permutation (Fig. 2a). The LMM coefficient was calculated to
further verify whether there was a significant correlation between
the pre-stimulus gamma/alpha power and the RTs. The results
showed a significant LMM coefficient of β = 2.85, P < 2 × 10−16, for
the pre-stimulus gamma power and the RTs, and a significant
LMM coefficient of β = −1.77, P = 0.04, for the pre-stimulus alpha
power and the RTs. To better illustrate the correlation between
the pre-stimulus gamma/alpha power and RTs, we sorted all
the trials based on the pre-stimulus gamma power, and grouped
every 10 trials into a trial bin along the continuum (see Methods).
Correlation coefficient between the pre-stimulus gamma/alpha
power and RTs was calculated for each and every electrode, based
on the trial-bin data. In sum, 83% of the electrodes showed a
positive correlation coefficient between the pre-stimulus gamma
power and the RTs (Fig. 2b), and 66% of the electrodes showed a
negative correlation coefficient for the pre-stimulus alpha power
and the RTs (Fig. 2c). For demonstration purposes, the linear
correlation between the pre-stimulus gamma/alpha power and
RTs was shown in one representative electrode: the trials with
higher pre-stimulus gamma power were associated with slower

RTs (Fig. 2b, the scatter figure), and the trials with higher pre-
stimulus alpha power were associated with faster RTs (Fig. 2c, the
scatter figure). Taken together, upon detecting supra-threshold
auditory targets, the pre-stimulus gamma and alpha power in
the DMN predicted the subsequent task performance: the higher
the pre-stimulus gamma power, the lower the pre-stimulus alpha
power, and the worse the task performance (slower RTs).

To better delineate how the pre-stimulus gamma power
affected the task-induced temporal dynamics of gamma,
depending on the fast vs. slow trials, the iEEG power spectrum
was averaged across the gamma band (30–200 Hz), and displayed
as a function of the fast vs. slow trials (Fig. 2d, upper panel). The
frequency range was determined based on the significant pre-
stimulus time-frequency cluster (fast vs. slow trials) which ranged
from 30 to 200 Hz (Fig. 2a). For the gamma power, the time-series
data showed that the pre-stimulus baseline activity was already
lower in the fast than slow trials. Upon the onset of the targets
at time 0, the gamma power started to be deactivated, and the
gamma power kept to be lower in the fast than the slow trials
during the progress of neural deactivation toward its maxima.
After the task-induced gamma deactivation reached its maxima,
the gamma power started to recover to the baseline activity, at
a faster speed in the fast than slow trials (Fig. 2d, upper panel).
To avoid the problem of double dipping (Kriegeskorte et al. 2009,
2010), no statistical tests were performed on the time-series data.
In addition, to cross-validate our findings, we conducted the
same analyses based on the classically defined high frequency
band (HFB, 70–200 Hz). Similar temporal profiles and differences
between the fast and slow trials were validated (Supplementary
Fig. 3).

To further investigate how the pre-stimulus baseline gamma
power in the PMC pre-determined the quality of task-induced
gamma deactivation in the PMC, we first compared the fast and
slow auditory trials, in terms of the latency and the power of the
task-induced maximal gamma deactivation, via planned paired-
samples t-tests. For the gamma power, the results suggested
that the fast auditory trials showed earlier onset (fast auditory
trials: 497 ± 28 ms; slow auditory trials: 678 ± 38 ms, Fig. 2d upper
panel, the left inserted bar figure), t(88) = −4.97, P = 8.71 × 10−5,
d = −0.58, and higher magnitude (normalized amplitude in fast
auditory trials: −1.90 ± 0.05, in slow auditory trials: −1.68 ± 0.05,
Fig. 2d, upper panel, the right inserted bar figure), t(88) = −3.62,
P = 4.89 × 10−4, d = −0.46, of task-induced gamma deactivation
than the slow auditory trials. To further confirm these results,
the LMM were adopted to test the effect of moment-to-moment
variance. The results showed that the pre-stimulus gamma
power was a significant predictor of both the latency, β = 5.73,
P < 2 × 10−16, and the power, β = 0.12, P < 2 × 10−16, of the task-
induced maximal gamma deactivation. In contrast, no significant
difference in the post-stimulus peak alpha latency, t(88) = −1.14,
P = 0.26, d = −0.14, and peak alpha power, t(88) = 0.75, P = 0.45,
d = 0.12, was found between the fast and slow auditory trials
(Fig. 2d, lower panel).

Furthermore, 84% of the electrodes showed a positive
correlation coefficient between the pre-stimulus gamma power
and the latency (Fig. 2e), and 82% of the electrodes with the
power (Fig. 2f) of the task-induced maximal gamma deactivation.
The linear correlation between the pre-stimulus gamma power
and the latency (Fig. 2e, the scatter figure) and the power
(Fig. 2f, the scatter figure) of the task-induced maximal gamma
deactivation was shown in a representative electrode, respec-
tively. The trials with higher pre-stimulus gamma power were
associated with later onset and alleviated task-induced gamma
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Fig. 2. Pre-stimulus gamma power in the DMN modulated behavior and task-induced DMN electrophysiological signatures in the auditory trials. (a) The
time-frequency spectrum of t-values for the “fast > slow” comparison in the auditory trials. Time points zero marks the onset of the target stimulus. The
significant clusters are outlined in black (P < 0.05, cluster-based permutation). The negative t-values (in blue) indicate lower gamma power in the fast
than slow trials, whereas the positive t-values (in red) indicate higher gamma power in the fast than slow trials. (b) Distribution of all the responsive PMC
electrode sites as a function of the correlation value between the pre-stimulus gamma power and the RTs. The correlation between the pre-stimulus
gamma power and the RTs in a representative electrode is shown in the scatter figure. (c) The same as (b), except for the pre-stimulus alpha power.
(d) The temporal profiles of the gamma (30–200 Hz, upper panel) and the alpha power (8–12 Hz, lower panel) are shown as a function of the fast vs.
slow trials. Shaded error bars show within-subject standard error of the mean. The inserted bar graphs show the post-stimulus trough gamma latency
and power, and the post-stimulus peak alpha latency and power in the fast vs. slow condition, respectively. Error bars represent the standard error of
the mean. (e) Distribution of all the responsive PMC electrode sites as a function of with the correlation value between the pre-stimulus gamma power
and the post-stimulus trough gamma latency. The scatter figure shows the correlation between the pre-stimulus gamma power and the post-stimulus
trough gamma latency in the same representative electrode as in (b). (f) Distribution of all the responsive PMC electrode sites along the continuum of
the correlation values between the pre-stimulus gamma power and the post-stimulus trough gamma power. The scatter figure shows the correlation
between the pre-stimulus gamma power and the post-stimulus trough gamma power in the same representative electrode as in (b). (g) Surface plot of
the gamma power spectrum in the trial-bins sorted by the pre-stimulus gamma power along the y-axis in the same representative electrode as in (b).
The vertical line indicates the stimulus onset. The black dots represent the time points at which the post-stimulus gamma power reaches its maximum
deactivation (i.e. latency) in each trial-bin, and the linear fit line is fitted for these time points. The left-most panel shows the mean RTs in each trial-bin.
(h) Distribution of all the responsive PMC electrode sites along the continuum of the correlation values between the pre-stimulus gamma power and
the pre-stimulus alpha power. The scatter figure shows the correlation between the pre-stimulus gamma power and the pre-stimulus alpha power in
the same representative electrode as in (b). ∗∗∗P < 0.001. RT, reaction time.

deactivation in the PMC. To demonstrate the modulatory effect of
the pre-stimulus gamma power on the RTs and the latency of the
post-stimulus maximal gamma deactivation, a surface plot was
obtained from the same representative electrode (Fig. 2g). Each
row represents the RT, the power and the latency of the maximal
gamma suppression in each trial-bin, respectively, and the trial-
bins were sorted by the pre-stimulus gamma power. It was clear
that both the RTs and the latency of the post-stimulus maximal
gamma deactivation increased gradually with the increasing pre-
stimulus gamma power. As we identically z-transformed the
time-frequency data in each and every auditory trial, rather than
z-transformed the fast and the slow auditory trials, separately,
the differences in power between the fast and the slow auditory
trials should not be biased due to the z transformation.

To determine the relationship between the pre-stimulus
gamma power and the pre-stimulus alpha power in the auditory
trials, the LMMs were adopted as well. The results showed that
the pre-stimulus gamma power was a significant predictor of
the pre-stimulus alpha power, β = −0.43, P < 2 × 10−4. 72% of the

electrodes showed a negative correlation coefficient between the
pre-stimulus gamma power and the pre-stimulus alpha power
(Fig. 2h). Results from one representative electrode showed that
the trials with higher pre-stimulus gamma power were associated
with lower pre-stimulus alpha power (Fig. 2h, the scatter figure),
suggesting anti-correlations between the pre-stimulus gamma
and alpha power.

The same analyses were performed on the visual trials, and
similar patterns of results were revealed (Fig. 3). The pre-stimulus
gamma band power (30–200 Hz) was significantly lower in the
fast than slow trials than in slow trials during pre-stimulus
periods (Fig. 3a). LMM analyses showed that an increase in the
pre-stimulus gamma power led to an increase in RTs, β = 1.28,
P = 7.43 × 10−8, whereas an increase in the pre-stimulus alpha
power led to a decrease in RTs, β = −1.15, P = 0.05. In addition,
74% of the electrodes showed a positive correlation coefficient
between the pre-stimulus gamma power and the RTs (Fig. 3b), and
70% of the electrodes showed a negative correlation coefficient
between the pre-stimulus alpha power and the RTs (Fig. 3c).
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Fig. 3. Pre-stimulus gamma power in the DMN modulated behavior and task-induced DMN electrophysiological signatures in the visual trials. (a) The
time-frequency spectrum of t-values for the “fast > slow” comparison in the auditory trials. Time points zero marks the onset of the target stimulus. The
significant clusters are outlined in black (P < 0.05, cluster-based permutation). The negative t-values (in blue) indicate lower gamma power in the fast
than slow trials, whereas the positive t-values (in red) indicate higher gamma power in the fast than slow trials. (b) Distribution of all the responsive PMC
electrode sites as a function of the correlation value between the pre-stimulus gamma power and the RTs. The correlation between the pre-stimulus
gamma power and the RTs in a representative electrode is shown in the scatter figure. (c) The same as (b), except for the pre-stimulus alpha power.
(d) The temporal profiles of the gamma power (30–200 Hz, upper panel) and alpha power (8–12 Hz, lower panel) are shown as a function of the fast
vs. slow trials. Shaded error bars show the within-subject standard error of the mean. The inserted bar graphs show the post-stimulus trough gamma
latency and power, and the post-stimulus peak alpha latency and power in the fast vs. slow condition, respectively. Error bars represent the standard error
of the mean. (e) Distribution of all the responsive PMC electrode sites as a function of the correlation values between the pre-stimulus gamma power
and the post-stimulus trough gamma latency. The scatter figure shows the correlation between the pre-stimulus gamma power and the post-stimulus
trough gamma latency in the same representative electrode as in (b). (f) Distribution of all the responsive PMC electrode sites along the continuum
of correlation values between the pre-stimulus gamma power and the post-stimulus trough gamma power. The scatter figure shows the correlation
between the pre-stimulus gamma power and the post-stimulus trough gamma power in the same representative electrode as in (b). (g) Surface plot of
the gamma power spectrum in the trial-bins sorted by the pre-stimulus gamma power along the y-axis in the same representative electrode as in (b).
The vertical line indicates the stimulus onset. The black dots represent the time points at which the post-stimulus gamma power reaches its maximum
deactivation (i.e. latency) in each trial-bin, and the linear fit line is fitted for these time points. The left-most panel shows the mean RTs in each trial-bin.
(h) Distribution of all the responsive PMC electrode sites along the continuum of the correlation values between the pre-stimulus gamma power and the
pre-stimulus alpha power. The inset scatter figure shows the correlation between the pre-stimulus gamma power and the pre-stimulus alpha power in
the same representative electrode as in (b). ∗P < 0.05. RT, reaction time.

For the post-stimulus period, the fast trials corresponded to a
lower power (normalized amplitude in fast trials: −1.88 ± 0.06; in
slow trials: −1.71 ± 0.04, Fig. 3d upper panel, the right inserted
bar figure), t(88) = −2.51, P = 0.01, d = −0.32, and an earlier latency
(fast trials: 547 ± 28 ms; slow trials: 618 ± 31 ms, Fig. 3d, upper
panel, the left inserted bar figure), t(88) = −2.31, P = 0.02, d = −0.25,
of the maximal gamma suppression than the slow trials. LMM
results confirmed these observations by showing that a lower
pre-stimulus gamma power led to an earlier latency, β = 4.81,
P < 2 × 10−16, and a lower power, β = 0.05, P < 2 × 10−16, of the
task-induced maximal gamma deactivation in the PMC area.
No such results were observed for the post-stimulus peak alpha
latency, t(88) = −1.29, P = 0.20, d = −0.14 (Fig. 3d, lower panel, the
left inserted bar figure), and peak alpha power, t(88) = 1.71, P = 0.09,
d = −0.12 (Fig. 3d, lower panel, the right inserted bar figure).

Furthermore, the pre-stimulus gamma power showed a posi-
tive correlation coefficient with the post-stimulus trough gamma
latency in 78% of the electrodes (Fig. 3e), and with the power
of the task-induced maximal gamma deactivation in 74% of the

electrodes (Fig. 3f). Generally, both the RTs and the latency of the
post-stimulus maximal gamma deactivation increased gradually
with the increasing pre-stimulus gamma power (Fig. 3g). LMM
results also showed that the pre-stimulus gamma power was
a significant predictor of the pre-stimulus alpha power for the
visual trials, β = −0.40, P = 0.01, and 76% of the electrodes showed a
negative correlation coefficient between the pre-stimulus gamma
power and the pre-stimulus alpha power (Fig. 3h). Taken together,
the results in the visual trials showed a highly consistent pattern
with the auditory trials.

Between-modality difference in the PMC
Subsequently, we aimed to explore the between-modality differ-
ence in the neural profile of the PMC. We first compared the
time course of the gamma power between the visual (collapsed
over all the visual trials) and the auditory (collapsed over all the
auditory trials) modality. Results of the cluster-based permuta-
tion indicated that the gamma power in the visual trials was
significantly lower than the auditory trials during the recovery
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period from the maximal suppression to the baseline (Fig. 4a,
right panel). However, there was no significant difference between
the visual and the auditory trials, either in terms of the latency
(visual trials: 520 ± 23 ms; auditory trials: 500 ± 27 ms), t(88) = 0.65,
P = 0.52, d = 0.01, or the power (normalized amplitude in visual
trials: −2.23 ± 0.18; in auditory trials: −2.15 ± 0.16), t(88) = −1.16,
P = 0.25, d = 0.07, of the task-induced maximal gamma deactiva-
tion (Fig. 4a, bar figures in the right panel).

As individuals responded significantly faster to visual trials
(686 ± 42 ms) than to auditory trials (703 ± 40 ms), t(18) = −2.06,
P = 0.05, d = −0.01 (Fig. 4a, left panel), it remains unknown whether
the between-modality difference represents a modality-specific
effect or an effect of task performance. Therefore, we further
investigated this issue by dissociating the effect of task perfor-
mance (RTs) at both the within-subject and the between-subject
level.

Within-subject comparison
According to the behavioral results, the visual responses were
generally faster than the auditory responses (Fig. 4a, left panel).
For the fast trials, there was no significant RT difference
between the fast visual trials (556 ± 30 ms) and the fast auditory
trials (557 ± 33 ms), t(18) = −0.21, P = 0.83, d = −0.01 (Fig. 4b, left
panel). The between-modality difference in RTs, however, was
mainly driven by the slow trials: the slow visual responses
(814 ± 52 ms) were significantly faster than the slow auditory
trials (850 ± 52 ms), t(18) = 3.12, P = 6.42 × 10−3, d = 0.16 (Fig. 4c,
left panel). Therefore, the between-modality difference in the
gamma temporal profile (Fig. 4a, right panel) could be caused
either by the difference in response speed or by the different
sensory modalities per se. We hypothesized that if the between-
modality difference is driven by the different sensory modalities
per se, it should still exist when the between-modality difference
in RTs was eliminated in the fast trials. To test this hypothesis,
we compared the gamma time course between the visual and the
auditory trials in the fast and the slow trials, respectively.

For the fast trials, the gamma power of the auditory trials was
still significantly higher than the visual trials during the recovery
period from the maximal suppression to the baseline (Fig. 4b,
right panel), P = 0.001, cluster-based permutation. No significant
between-modality difference was found either for the latency
(visual trials: 520 ± 23 ms; auditory trials: 500 ± 27 ms), t(88) = 0.65,
P = 0.52, d = 0.01, or the power (normalized amplitude in visual
trials: −3.23 ± 0.18; in auditory trials: −3.15 ± 0.16), t(88) = −1.00,
P = 0.32, d = −0.05, of the task-induced maximal gamma deacti-
vation (Fig. 4b, bar figures in the right panel). For the slow trials,
however, there was no significant difference between the visual
and the auditory trials in temporal profile of gamma (Fig. 4c,
right panel). Also, no significant between-modality difference was
found either for the latency (visual trials: 649 ± 30 ms; audi-
tory trials: 700 ± 33 ms), t(88) = −1.64, P = 0.11, d = −0.17, or for the
amplitude (normalized amplitude in visual trials: −3.01 ± 0.14; in
auditory trials: −2.89 ± 0.16), t(88) = −1.3, P = 0.20, d = −0.07, of the
post-stimulus maximal gamma deactivation (Fig. 4c, bar figures
in the right panel).

Between-subject comparison
The within-subject comparisons between the visual and auditory
trials, as a function of the fast and the slow trials, showed
that the higher gamma power in the auditory than visual trials
during the recovery period from the maximal suppression to the
baseline represents a clean between-modality difference, rather
than a response speed effect. However, as the clean between-
modality difference was confined to the fast trials, one may

argue that this effect only applies to the situations when the
brain is in a high-efficiency status. To further confirm and
generalize this conclusion across all the trials, we performed
between-subject comparisons by categorizing the subjects into
two groups (see Methods). In the response matched group, the
visual (765 ± 95 ms) and the auditory (746 ± 114 ms) response
speed (collapsed over all the trials in one modality within a
subject) was comparable, t(7) = 0.56, P = 0.59, d = 0.07 (Fig. 5a, left
panel), whereas in the response unmatched group, the visual
responses (676 ± 55 ms) were significantly faster than the auditory
responses (773 ± 62 ms), t(10) = −2.92, P = 0.02, d = −0.36 (Fig. 5b, left
panel).

At the neural level, for the response matched group, there was a
significant difference in the gamma power between the auditory
and visual trials during the gamma recovery period, P = 0.001,
cluster-based permutation (Fig. 5a, right panel). However, there
was no significant difference between the visual and the auditory
modality, either in terms of the latency (visual trials: 585 ± 28 ms;
auditory trials: 563 ± 36 ms), t(41) = 0.66, P = 0.51, d = 0.11, or the
power (normalized amplitude in visual trials: −3.43 ± 0.19; in
auditory trials: −3.29 ± 0.19), t(41) = −1.25, P = 0.22, d = −0.12, of the
post-stimulus maximal gamma deactivation (Fig. 5a, bar figures
in the right panel). For the response unmatched group, there
was no significant between-modality difference in the gamma
neural profile (Fig. 5b, right panel). Also, no significant between-
modality difference was found either for the latency (visual trials:
535 ± 33 ms; auditory trials: 510 ± 30 ms), t(46) = 0.81, P = 0.48,
d = 0.12, or the power (normalized amplitude in visual trials:
−2.21 ± 0.19; in auditory trials: −2.14 ± 0.16), t(46) = −0.94, P = 0.35,
d = −0.06, of the post-stimulus maximal gamma deactivation
(Fig. 5b, bar figures in the right panel). To further rule out the
possibility that the between-modality difference in the gamma
temporal profiles was only specific to the 20-ms cutoff we chose to
categorize the matched and unmatched subject group, we further
calculated the between-modality difference in the matched vs.
unmatched group at another two cutoffs (10 and 30 ms). The new
results at the 10- and 30-ms cutoffs showed high consistency with
the results at the 20-ms cutoff (see Supplementary Fig. 4).

To summarize, the within- (Fig. 4b and c) and between-subject
(Fig. 5) comparisons together suggested that with the task per-
formance being comparable between the visual and the auditory
modality, the auditory responses in the PMC recovered faster
from the maximal suppression to the baseline than the visual
responses.

Discussion
Upon repetitively performing the same well-practiced behavioral
task on the same bottom-up sensory inputs, our task perfor-
mance still varies dramatically. It has been well documented that
elevated pre-stimulus baseline activity in the DMN impairs the
subsequent task performance (Weissman et al. 2006; Boly et al.
2007; Hayden et al. 2009; Kucyi et al. 2020). It remains unknown,
however, how variation in the pre-stimulus baseline activity of the
DMN impacts the temporal dynamics of the task-induced DMN
deactivation. In the present study, we clearly demonstrated that
the elevated pre-stimulus baseline activity of the DMN resulted
in three consequences: (i) the DMN was less deactivated during
the task performance; (ii) it took a longer time for the DMN
deactivation to reach its maximal suppression; and (iii) it took
longer for the task-induced DMN deactivation to return back to
the baseline (Figs. 2 and 3).

It has been well documented that the gamma power of the
DMN significantly decreases, relative to the pre-stimulus baseline,
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Fig. 4. Modality-specific mechanisms in DMN—within-subject comparisons. (a) Direct comparison between the visual and auditory modalities, collapsed
over all the trials in each modality. The left panel: the mean RTs in the visual and auditory modalities. The light gray lines depict the mean RTs of each
subject in the visual and auditory trials. The right panel: temporal dynamics of the gamma power in the DMN are shown as a function of the visual
vs. auditory modality. Shaded regions around each waveform denote ±1 within-subjects standard error of the mean. The inserted bar figures show the
latency and the power of the post-stimulus maximal gamma suppression in the visual and auditory trials. The error bars represent the standard error of
the mean. (b) Comparisons between the visual and auditory processing in the fast trials. (c) Comparison between the visual and auditory processing in
the slow trials. The time windows marked by the gray bars showed statistically significant difference between the visual and auditory trials, at P < 0.05,
corrected for multiple comparisons using the cluster-based permutation test. ∗∗P < 0.01, ∗∗∗P < 0.001. RT, reaction time.

during a variety of demanding cognitive tasks, such as visual
search (Ossandón et al. 2011), reading (Lachaux et al. 2008; Jerbi
et al. 2010), backward-masking visual categorization (Ramot et al.
2012), arithmetic calculation (Dastjerdi et al. 2011; Foster et al.
2012, 2015), etc. Moreover, the more complex the cognitive tasks,
the longer the RTs, and the stronger the task-induced gamma
suppression in the DMN (Ossandón et al. 2011). Also, compared
with behavioral errors, correct responses correspond to a stronger
task-induced gamma power deactivation as well (Kucyi et al.
2020). The longer RTs in the more complex cognitive tasks and
the correct responses both indicate that the brain enters a more
efficient task state when higher levels of executive control are
involved, compared with the easier tasks or behavioral errors. In
the present experimental setup, however, the longer RTs represent
a less efficient, whereas the faster RTs represent a more efficient
task state of the brain. Specifically speaking, upon performing

the same behavioral task on the same bottom-up inputs, the
slower RTs simply indicate worse task performance, whereas the
faster RTs simply indicate better task performance. Therefore,
consistent with the stronger gamma suppression in the DMN
during the complex (slower RTs) than easy (faster RTs) task
(Ossandón et al. 2011), the faster RT trials in the present study
were associated with stronger gamma suppression in the DMN
than the slower RT trials (Fig. 2a and 3a). In addition, the stronger
gamma suppression in the fast trials also reached its maximal
suppression faster (i.e. a shorter latency), and returned to the
baseline faster, compared with the slow trials (Figs. 2d and 3d,
upper panel).

Please note, the differential post-stimulus DMN dynamics
between the complex vs. easy task were induced by the different
task demands (Ossandón et al. 2011). However, the differential
post-stimulus DMN dynamics between the fast vs. slow responses
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Fig. 5. Modality-specific mechanism in DMN—between-subject comparisons. (a) Comparison between the visual and auditory trials in the subjects
who responded to the visual and auditory targets comparably fast. The left panel: the RTs of the visual and auditory trials. The light gray lines depict
the mean RTs of each subject in the visual and auditory trials. The right panel: the temporal dynamics of the gamma power in the DMN are shown
as a function of the visual vs. auditory modality. Shaded regions around each waveform denote ±1 within-subjects standard error of the mean. The
inserted bar figures show the latency (ms) and the power (z-value) of the post-stimulus maximal gamma suppression during the visual and auditory
processing. Error bars represent the standard error of the mean. (b) Comparison between the visual and auditory trials in the subjects whose auditory
RTs were significantly slower than visual RTs. The time windows marked by the gray bars showed statistically significant difference between the visual
and auditory trials, at P < 0.05, corrected for multiple comparisons using the cluster-based permutation test. ∗∗P < 0.01, ∗∗∗P < 0.001. RT, reaction time.

in the present study were pre-determined by the pre-stimulus
baseline activity in the DMN (Figs. 2 and 3). It has been well
documented that the spontaneous fluctuations of neural activity
in the DMN prior to a behavioral task result in different task
outcomes: the more elevated the pre-stimulus DMN activity,
the worse the behavioral performance in stimulus-driven and
attention-demanding tasks (Eichele et al. 2008; Esterman et al.
2013; Li et al. 2007; Sali et al. 2016; Soravia et al. 2016; Weissman
et al. 2006; Su et al. 2020). Functionally, the elevated pre-stimulus
DMN activity has been associated with momentary lapses
of attention and task-irrelevant mind-wandering (Logothetis
et al. 2001; Weissman et al. 2006; Vincent et al. 2007; Parvizi
and Kastner 2018). In the present study, we further showed
how the elevated pre-stimulus DMN activity led to worse task
performance. Specifically, the pre-activated DMN makes it less
efficient not only to transit from the pre-stimulus baseline to
the task-induced suppression, in terms of a lower task-induced
maximal suppression and a longer latency, but also less efficient
to recover from the maximal suppression to the baseline activity
(Figs. 2d and 3d, upper panel).

Previous evidence showed that the more complex the behav-
ioral task, the longer the RTs, and the slower the recovery time
from the task-induced DMN maximal suppression to the baseline
activity (Ossandón et al. 2011). In the present study, we also found
that the task-induced DMN maximal suppression returned to the
baseline significantly slower in the longer than shorter RT trials
(Figs. 2d and 3d, upper panel). Note, the longer RTs in the previous

complex task and the longer RTs in the present study have dif-
ferent functional implications: a higher level of executive control
and efficiency of the brain in the former case vs. simply a lower
efficiency state of the brain in the latter case. Therefore, a slower
recovery from the maximal suppression to the baseline in both
cases indicates a generally slower motor response. Furthermore,
our results showed that the mean latency of the task-induced
maximal gamma deactivation in the DMN was 179 ms earlier than
the mean RT, which positioned the response period well in the
recovery phase from the maximal suppression to the baseline.
Therefore, together with previous evidence, the present results
implied that the amplitude and the latency of the task-induced
maximal suppression in the DMN may index the efficiency of
earlier sensory and central executive functions. For example,
both the longer RTs in the previous complex tasks (Ossandón
et al. 2011) and the shorter RTs in the present study represent
a high efficiency state of the human brain, and are accordingly
both associated with deeper and faster task-induced maximal
suppression in the DMN. On the other hand, the speed of the
later recovery from the maximal suppression to the baseline may
index the speed of motor responses. For example, both the longer
RTs in the previous complex task (Ossandón et al. 2011) and the
longer RTs in the present study are associated with a slower
recovery speed from the maximal suppression to the baseline in
the DMN.

It has been suggested that the gamma oscillation in the visual
cortex plays an important role in visual perception by facilitating
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the forward-transfer of information through the cortical hierar-
chy (Bosman et al. 2012; Jia et al. 2013; Roberts et al. 2013; for
reviews, see Sedley and Cunningham 2013) and/or inhibiting the
activity of task-irrelevant regions (Tadin et al. 2003; Gieselmann
and Thiele 2008; Chalk et al. 2010; for reviews see Sedley and
Cunningham 2013). Accordingly, the higher gamma power in the
visual cortex, the better the individuals’ performance (Osipova
et al. 2006; Womelsdorf et al. 2006; Edden et al. 2009; Fisch et al.
2009). In contrast to the visual gamma, the lower pre-stimulus
alpha power in visual areas is predictive of better task perfor-
mance both in humans and non-human primates (Ergenoglu et al.
2004; Thut et al. 2006; Hanslmayr et al. 2007; van Dijk et al.
2008; Zhang et al. 2008). Moreover, it has been revealed, in V1
of awake macaques, that the alpha power is anti-correlated with
the gamma power (Spaak et al. 2012). In the present study, we
found similar anti-correlations between the pre-stimulus gamma
and alpha power in human PMC (Figs. 2h and 3h). However, the
functional roles of the PMC gamma and alpha power were inverse
to those of the visual gamma and alpha. Specifically speaking, a
positive correlation between the pre-stimulus PMC gamma power
and the RTs (Figs. 2b and 3b), and a negative correlation between
the pre-stimulus PMC alpha power and RTs (Figs. 2c and 3c) were
revealed in the present study. The lower pre-stimulus gamma
power and the higher pre-stimulus alpha power led to better task
performance, i.e. shorter RTs. Together with previous evidence,
the present results suggested a general anti-correlation between
the gamma and the alpha power across the PMC and the visual
cortex while inverse functional roles of the PMC vs. the visual
cortex on task performance, along both the gamma and the alpha
bands. Visual effects can be induced by electrical stimulation
of the PMC boundary electrode sites close to the visual cortex
(Foster and Parvizi 2017). However, when the boundary stimu-
lations were excluded, no positive visual effects were observed
within the PMC, indicating that the PMC visual effects might be
caused by the interference of the visual cortex, rather than a
real function of the PMC. Therefore, the underlying functions of
the PMC are fundamentally different from the visual cortex. The
present results implied that the DMN needs to be sufficiently
suppressed, in terms of low gamma and high alpha power, in
order for the task-related cortex (e.g. visual cortex) to maintain
high processing efficiency, in terms of high gamma and low alpha
power. To verify this speculation, future studies will need to
investigate how the between-regional coherence in the gamma
and alpha band between the DMN and the sensory cortex affects
task performance.

In addition, via direct comparisons between the visual and the
auditory trials, we investigated the between-modality difference
in the DMN neural profile. The photo-transduction in the retina
is slower than the process of sound transduction by the hair
cells of the inner ear (Corey and Hudspeth 1979; Schnapf et al.
1987), and the neural transmission time from the sense organs
to the cerebral cortex is longer in the visual system due to the
greater distances involved (Fain 2003; King 2005b). Accordingly,
the detection time of visual stimuli is longer than the detection
time of auditory stimuli (Dunlap and Wells 1910; Jose and Gideon
Praveen 2010). However, the auditory processing advantages could
be eliminated in multisensory environments when both visual
and auditory stimuli could appear (Koppen and Spence 2007;
Huang et al. 2015; Yue et al. 2015). Behavioral data in the present
multisensory paradigm further showed that the mean auditory
detection times became even slower than the mean visual
detection times (Fig. 4a). At the neural level, when the visual
and the auditory stimuli induced identical DMN deactivation

neural profiles, the visual responses were significantly faster than
the auditory responses (Figs. 4c and 5b). To match the response
speed between the two modalities, the visual responses need
to be relatively slowed down, whereas the auditory responses
need to be speeded up. Accordingly, in the match conditions
(Figs. 4b and 5a), we observed a longer recovery time from the
maximal suppression to the baseline in the DMN during the
visual than auditory trials, with the amplitude and the latency
of the maximal suppression being comparable between the two
modalities. Evidence from previous fMRI studies showed that
the BOLD responses in human PMC were significantly more
deactivated during visual than auditory perception when the
visual and auditory response speed was comparable (Daselaar
et al. 2010; Huijbers et al. 2011). The present results further
suggested that the more deactivated PMC gamma power during
visual than auditory processing happened during the recovery
period from the maximal suppression back to the baseline
activity, approximately 650–950 ms after the stimulus onset
(Fig. 4a, right panel). The average visual and auditory RTs in the
present study were both around 700 ms (visual trials: 686 ms,
auditory trials: 703 ms) (Fig. 4a, left panel), which positioned the
manual responses well within the recovery period in PMC. These
neural and behavioral results together implied that the efficiency
of earlier sensory processing might be comparable between
the visual and the auditory modalities, whereas the between-
modality difference might happen during the later response
period.

To summarize, via high temporal resolution intracranial
recording, we revealed the precise temporal dynamics underlying
how variation in the pre-stimulus baseline activity of the DMN
translates to the subsequent varying task performance when the
human brain operates the same behavioral task on the same
bottom-up inputs. For the first time in the field, we showed that
elevated pre-stimulus gamma power in the DMN alleviates the
task-induced suppression, delays its latency to reach the maximal
suppression, and slows down its return to the baseline, which
eventually results in deleterious effects on task performance. The
above neural dynamics in the DMN occur, irrespectively of the
input sensory modality. As we adopted simple detection tasks in
the present study, it remains to be further investigated whether
similar DMN neural dynamics apply to more complex tasks.
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