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Prior knowledge has a profound impact on the way we perceive the world. However, it remains unclear how the prior knowl-
edge is maintained in our brains and thereby influences the subsequent conscious perception. The Dalmatian dog illusion is
a perfect tool to study prior knowledge, where the picture is initially perceived as noise. Once the prior knowledge was intro-
duced, a Dalmatian dog could be consciously seen, and the picture immediately became meaningful. Using pictures with hid-
den objects as standard stimuli and similar pictures without hidden objects as deviant stimuli, we investigated the neural
representation of prior knowledge and its impact on conscious perception in an oddball paradigm using electroencephalo-
gram (EEG) in both male and female human subjects. We found that the neural patterns between the prestimulus alpha
band oscillations and poststimulus EEG activity were significantly more similar for the standard stimuli than for the deviant
stimuli after prior knowledge was provided. Furthermore, decoding analysis revealed that persistent neural templates were
evoked after the introduction of prior knowledge, similar to that evoked in the early stages of visual processing. In conclu-
sion, the current study suggests that prior knowledge uses alpha band oscillations in a multivariate manner in the prestimu-
lus period and induces specific persistent neural templates in the poststimulus period, enabling the conscious perception of
the hidden objects.
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Significance Statement

The visual world we live in is not always optimal. In dark or noisy environments, prior knowledge can help us interpret
imperfect sensory signals and enable us to consciously perceive hidden objects. However, we still know very little about how
prior knowledge works at the neural level. Using the Dalmatian dog illusion and multivariate methods, we found that prior
knowledge uses prestimulus alpha band oscillations to carry information about the hidden object and exerts a persistent influ-
ence in the poststimulus period by inducing specific neural templates. Our findings provide a window into the neural under-
pinnings of prior knowledge and offer new insights into the role of alpha band oscillations and neural templates associated
with conscious perception.

Introduction
Conscious perception is not solely determined by sensory input.
Starting with Helmholtz (1867), perception has been concep-
tualized as an inference process in which top-down prior
knowledge is combined with bottom-up sensory input to con-
struct posterior beliefs that enter our awareness. Especially in
the presence of noisy or ambiguous sensory input, prior knowl-
edge guides us in interpreting the imperfect perceptual infor-
mation and helps us to consciously identify objects and people
(Bar, 2004; de Lange et al., 2018). Despite the profound impact
of prior knowledge, it remains largely unknown how prior
knowledge is maintained in our brains and persistently contrib-
utes to our conscious perception.
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Previous studies have shown that prior knowledge such as the
identity (Mayer et al., 2016; Samaha et al., 2018), location
(Samaha et al., 2016), onset time (Samaha et al., 2015; Wilsch et
al., 2015), and task demands (Wutz et al., 2018; Han et al., 2023)
of an upcoming stimulus is closely related to variations in the
prestimulus alpha band oscillations in human studies. In vivo
recordings from cats and macaques also show that the expect-
ancy of visual stimuli is accompanied by an increase in the power
and the interareal interaction of the alpha band (Chatila et al.,
1992; L. Mo et al., 2011; von Stein et al., 2000). The existing evi-
dence suggests that alpha band oscillations are viable neural
markers for prior knowledge in the brain; however, whether
alpha band oscillations actually carry information about prior
knowledge remains unknown. On the other hand, previous stud-
ies have shown that conscious perception of stimuli is associated
with late-onset (.200ms), long-lasting (;1 s), and more stable
neural activity in a variety of brain areas (Li et al., 2014; Schurger
et al., 2015) and with stronger neural representations (Salti et al.,
2015; King et al., 2016). It remains unclear whether and how
prior knowledge modulates the neural representation of the
stimuli to enable conscious perception.

The Dalmatian dog illusion is one of the most compelling
demonstrations of the dramatic effects of prior knowledge
(Gregory, 1970). When the picture was first viewed, it was per-
ceived as a noisy set of meaningless black and gray patches
that were difficult to categorize; however, after a simple
instruction about the hidden Dalmatian, the dog could be
consciously seen, and the subjective perception of the picture
immediately became clear and meaningful (van Tonder and
Ejima, 2000; Chang et al., 2016; Sadil et al., 2019). There is no
doubt that the prior knowledge about the hidden objects plays
an important role in our ability to consciously perceive the
dog, making such pictures a perfect tool for studying the influ-
ence of prior knowledge on conscious perception.

Using the hidden Dalmatian picture and another similar pic-
ture with a hidden face (Ahissar and Hochstein, 2004; Albright,
2012), we investigated the retention of prior knowledge and its
effect on conscious perception. To establish a minimal contrast
(Dehaene, 2014) between consciously seen and unseen stimuli,
we constructed nearly identical pictures with and without the
hidden object (Fig. 1A). These stimuli were then presented in a
task-irrelevant oddball paradigm and assigned as the standard
and deviant stimuli, respectively. Initially, both stimuli were per-
ceived as noise, and their subjective perception was similar.
However, immediately after the revelation of the hidden object,
the previously hidden information becomes consciously accessi-
ble. Participants can now consciously perceive and differentiate
between the standard and deviant stimuli based on the newly
acquired prior knowledge. By using the task-irrelevant oddball
paradigm and examining the visual mismatch response, we were
able to assess the successful manipulation of prior knowledge
and investigate its impact on conscious perception while main-
taining experimental control over attentional effects. Our find-
ings, obtained using multivariate methods, demonstrated that
prior knowledge uses alpha band neural oscillations to convey
information about the hidden objects before stimulus onset.
Furthermore, after stimulus onset, prior knowledge induced a
persistent neural template associated with the hidden object,
facilitating sustained conscious perception.

Materials and Methods
Participants. Twenty-four healthy human participants of either sex

participated in the experiment. Two participants were excluded from the

analysis because of excessive noise and artifacts in the EEG data.
Analyses were performed on the remaining 22 participants (12
females, 19–25 years old, all right-handed). All participants had
normal or corrected-to-normal vision and no history of neurologic
or mental illness. None of the participants had been exposed to the
experimental materials before this experiment. All participants
gave informed consent before the experiment in accordance with
the Declaration of Helsinki, and the study was approved by the
Ethics Committee of the School of Psychology, South China
Normal University.

Stimuli. Two sets of visual stimuli were created by modifying the hid-
den Dalmatian dog and face pictures (Gregory, 1970; Ahissar and
Hochstein, 2004); one set of pictures contains the features of a dog or a
human face, and the other set is obtained by flipping the previous set of
pictures vertically and does not contain the corresponding features. We
then assigned the pictures with and without face or dog features as
standard and deviant stimuli, respectively. In this way, we not only mini-
mized the difference in physical properties between the standard and
deviant stimuli but also ensured that it was difficult to distinguish
between the standard and deviant stimuli in the absence of explicit
instructions; however, it was clear in the presence of explicit instructions
that the standard stimuli contained a face or a dog, whereas the deviant
stimuli did not. For the standard stimuli, the hidden face or dog was em-
bedded in the peripheral upper visual field (;1.5–2° visual angle away
from the central fixation point).

To maintain participants’ attention on the center fixation point
(L. Mo et al., 2011), regardless of whether the stimuli were standard
or deviant, a solid or hollow blue square (0.5° � 0.5° visual angle)
was presented in the center of the stimuli, identified as the target or
nontarget stimulus, respectively.

Experimental design. The experiment consisted of two sessions, the
preinstruction session and the postinstruction session. In each session,
two blocks containing the dog and two blocks containing the face were
presented alternately. The order of the blocks was counterbalanced
across participants. Each block contained 200 trials, consisting of 70%
standard stimulus trials, 20% deviant stimulus trials, and 10% target
stimulus trials. Within each trial, a central fixation point (0.05° � 0.05°
visual angle) was first presented for 750ms, then the stimuli were pre-
sented on a gray background for 250ms. Participants were asked to
respond to the target stimuli by pressing a key on the keyboard within
750ms of stimulus onset (Fig. 1B), regardless of the content of the pre-
sented images. If the response was incorrect or missed, a feedback tone
was emitted. Target trials and trials with false alarms were excluded
from the EEG data analysis.

At the end of the preinstruction session, each participant was given
verbal instructions and a picture with cues to reveal either the hidden
dog or the hidden face, but not both. Stimuli were further categorized as
instructed and noninstructed depending on which picture provided in-
formation about the hidden feature. The type of instructed stimuli was
counterbalanced across participants (i.e., half of the participants were
instructed to detect the face stimulus, and the other half were instructed
to detect the dog stimulus). Participants were allowed to continue the
experiment until they could clearly report the face or dog in the stimuli
and correctly indicate the location of its components (e.g., eye location
in the face stimuli, dog head location in the dog stimuli) so that partici-
pants could easily perceive a dog or human face in the standard stimuli
in the postinstruction session. Participants were asked to complete the
postinstruction session with four stimulus blocks containing exactly the
same physical stimuli (Fig. 1C). The experiment had an average duration
of;1 h.

In summary, participants were exposed to two conditions in two ses-
sions, the instructed condition and the noninstructed condition in the
preinstruction and postinstruction sessions. Each condition contained
three different types of trials, standard, deviation, and target stimulus.
Stimuli were presented at a distance of 57 cm using a desktop computer
with an LCD monitor (resolution, 800 � 600 pixels; refresh rate,
120Hz). Stimuli were presented using the Psychtoolbox (Brainard,
1997) running in MATLAB (MathWorks), and electroencephalograms
(EEGs) were recorded throughout the experiment.
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EEG acquisition and preprocessing. EEG data were recorded using
caps with 62 Ag/Ag-Cl electrodes (10–20 system) with NeuroScan
SynAmp Amplifiers (sampling rate, 1000Hz). The impedance of all elec-
trodes was below 5 kV during the recording. The vertical eye move-
ments were recorded by electrodes placed above and below the left eye,
and the horizontal eye movements were recorded by electrodes placed
on the outer canthi of both eyes. All off-line analyses were performed
using FieldTrip software (Oostenveld et al., 2011) and custom scripts in
MATLAB. For the off-line preprocessing, the data were downsampled to
256Hz and converted to an average reference. Then, the continuous
EEG data were epoched from�1500ms before to 2000ms after stimulus
onset. The epoched data were visually inspected, epochs with visual and
muscle artifacts were discarded, and noisy electrodes were spherically
interpolated. After artifact rejection, ;90% trials were retained. In both
the instructed and noninstructed conditions during the preinstruction
and postinstruction sessions, we retained ;250 standard trials and 70
deviant trials each. No filtering, including high-pass, low-pass, or notch
filters, was applied during the EEG analysis. To perform the subsequent
global field power (GFP) and decoding analysis, EEG signals were base-
line-corrected at the trial level using a 500–0ms interval before the stim-
ulus onset for each individual trial.

GFP analysis. GFP is calculated as the SD of the response across
channels at each time point (Lehmann and Skrandies, 1980), which is in-
dependent of the bias caused by manual selection of electrodes of interest
and provides a reliable and direct measure of the total brain activity.
GFP at time t is defined as follows:

GFPt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ui;t � �utð Þ2;
s

where ui;t is the neural activity for channel i at time t, �ut is the mean ac-
tivity over all channels at time t, and n is the number of channels. GFP
computations were performed for standard and deviant trials, respec-
tively. To avoid the confound introduced by the difference in the num-
ber of trials, we matched the number of trials for the standard and
deviant trials by randomly extracting the number of deviant trials from
the standard trials (;70 standard trials and ;70 deviant trials were
retained for each condition).

Topographical correlation analysis. We conducted a topographical
correlation analysis to assess the neural representational similarity
between the prestimulus oscillatory power and the poststimulus EEG

Figure 1. The stimuli and the experimental design. A, Two sets of standard and deviant visual stimuli were created by modifying the hidden Dalmatian dog and face pictures. For the stand-
ard stimuli, without explicit instructions, the pictures appeared as a set of meaningless black and gray patches that were difficult to categorize. However, when explicit instructions were given,
the picture became clear and meaningful and could be easily categorized as a human face or a dog. The deviant stimuli were obtained by flipping the standard stimuli upside down. For the
deviant stimuli, as they do not contain information about the hidden Dalmatian dog and face, the pictures remained meaningless even with explicit instructions. The hidden dog and face are
colored in red in the magnified pictures. B, Time course of a single trial. Regardless of of a standard or deviant stimulus, a hollow or solid blue square was always presented in the center of
the stimulus, identified as a nontarget or target stimulus, respectively. Participants were instructed to respond only to the target stimuli. The experiment consisted of 70% standard stimulus tri-
als, 20% deviant stimulus trials, and 10% target stimulus trials. C, Time course of the whole experiment. The experiment consisted of a preinstruction, postinstruction, and instruction session
in between. In the preinstruction session, both the instructed and noninstructed pictures were considered as a set of meaningless black and gray patches of noise. Participants then received in-
formation about either the hidden dog or the hidden face during the instruction so that the hidden object would consciously be seen for the instructed picture in the postinstruction session.
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activity. The prestimulus power Pfi for channel i and frequency f was
obtained through a fast Fourier transform (FFT) from�500 to 0ms rela-
tive to the stimulus onset. A zero padding of length nfft¼ 256 was used
to improve the frequency resolution of the Fourier transform. To obtain
the poststimulus EEG activity, an overlapping sliding window of 100ms
(step size, 3.9ms) centered on the time point t was first applied to
improve the signal-to-noise ratio. Consequently, the EEG activity within
the 0–50ms range contained signals originating from the prestimulus
window and thus was excluded from the analysis of the poststimulus
data. The EEG activity _ui;t was defined as the square of the mean neural
activity for all trials for one condition over the sliding window for the
time t and channel i. No baseline correction was applied during the com-
putation of prestimulus power and EEG activity. We quantified the rep-
resentational similarity between the prestimulus power and the EEG
activity using a Spearman correlation across channels as follows:

rhot;f ¼ 1�
6
Xn

i¼1
R _ui;tð Þ � R Pf

i

� �� �2

n n2 � 1ð Þ ;

where n is the total number of channels and R xð Þ is the rank of the x
variable. For further statistical analysis, correlation values were Fisher z
transformed.

To eliminate the influence of spontaneous correlations between
prestimulus power and poststimulus EEG activity, we used a two-step
procedure. First, we calculated the spontaneous correlations, which
can naturally arise without any external stimulus, by computing
Fisher z transformed and averaged correlation values for prestimulus
power and prestimulus EEG activity (�500–0ms) across all frequen-
cies. Subsequently, we subtracted these spontaneous correlations
from the Fisher z-transformed desired correlation values for each fre-
quency, thereby isolating the specific correlations of interest. This
approach effectively accounted for the baseline or background corre-
lations and allowed us to focus on the target correlations between
prestimulus power and poststimulus EEG activity.

To evaluate the impact of prior knowledge on the representational
similarity in both standard and deviant trials, we introduced the
Influence Index (II), was computed separately for standard and deviant
trials using the following equation:

II ¼ rhoinstr;post � rhoinstr;pre
� �� rhonon�instr;post � rhonon�instr;pre

� �
:

In this equation, rhoinstr;post represents the averaged correlation values
in the instructed condition during the postinstruction session. Similarly,
rhoinstr;pre represents the averaged correlation values in the instructed
condition during the preinstruction session. Likewise, rhonon�instr;post

represents the averaged correlation values in the noninstructed condi-
tion during the postinstruction session, and rhonon�instr;pre represents the
averaged correlation values in the noninstructed condition during the
preinstruction session. A positive II value indicates that prior knowledge
contributes to an increase in representational similarity, whereas a nega-
tive value suggests the opposite.

Decoding analysis. To investigate whether the neural activity for tri-
als in the instructed condition in the postinstruction session carried
prior knowledge for different types of stimuli, we built forward models
from the EEG signal using the linear discriminant analysis approach
(Han et al., 2019; Kok et al., 2017; Shen et al., 2019). We assumed that
there is a linear combination of data from different EEG components
that can best represent the features of the dog or the face stimuli. Such a
neural representation R at time t can be represented as follows:

Rt ¼ a1;t:u1;t 1a2;t:u2;t 1 :::1an;t:un;t;

where a1;t;a2;t; :::;an;t are the weights for the linear combination at
time t. For the sake of being representative, the neural representation
should be similar to each other across different trials for one type of
stimulus, but they also should be dissimilar to each other across trials for
different types of stimuli. Therefore, to best characterize the face or the

dog stimuli in our experiment, a score function can be created as
follows:

f Að Þ ¼
dist Rdog

t ;Rface
t

� �
var Rdog

t

� �
1var Rface

t

� � ;
where A ¼ ½a1;t;a2;t; :::;an;t�, dist x; yð Þ ¼ x� yð Þ2 is the function for
calculating the Euclidean distance between the neural representation for
two types of stimuli, and var :::ð Þ is the function to calculate the variance
within one type of stimulus. Mathematically, such score function will be
maximal when, as follows:

A ¼ ûdog � ûface

Sdog 1 Sface
;

where û ¼ �u1;t; �u2;t; :::; �un;t½ � is the mean activity over trials for one type
of stimulus for all components, and S is the within-stimulus covariance.
When such a score function is maximal, the combination weights A are
the optimized ones.

In the current analysis, we used all standard trials from the prein-
struction and postinstruction sessions in both instructed and nonin-
structed conditions to obtain the optimal weights for distinguishing
between dog and face stimuli. To avoid potential complications caused
by an unbalanced number of trials per condition, we matched the num-
ber of trials by randomly subsampling the trials in conditions with a
larger number of trials (;240 standard trials were retained for each con-
dition). To further improve the signal-to-noise ratio, these standard tri-
als were averaged over a 100ms time window centered on the time point
of interest. We trained and tested the classifier using a leave-one-out
cross-validation method (Varoquaux et al., 2017). For temporal general-
ization analysis, the performance of the classifier was evaluated not only
at the time point used for training (e.g., classifier w(t1) is tested at t1,
w(t2) at t2, and so on), but also on the data at all other time points
(e.g., classifier w(t1) at all time points t1, t2, t3, and so on), giving us
a (training time) � (decoding time) temporal generalization matrix
(King and Dehaene, 2014). The classifier’s performance was eval-
uated through the utilization of receiver operating characteristic
(ROC) curves and the computation of the area under the curve
(AUC). This approach yields a sensitive and criterion-free assess-
ment of decoding performance (van Moorselaar et al., 2020).

Statistical analysis. In the GFP analysis, the topographical correlation
analysis, and decoding analysis above, the statistical comparison of two
conditions was often performed over multiple times or frequency points,
which could introduce multiple-comparison problems and inflate the
false-positive rate. To control the Type I error rate associated with multi-
ple comparisons, we adopted the nonparametric cluster-based permuta-
tion test (Maris and Oostenveld, 2007), which was implemented in a
custom script in MATLAB (MathWorks). For the GFP analysis, the
topographical correlation analysis. and decoding analyses, the clus-
ter-based correction was applied to compare the difference in GFP,
decoding performance, or topographical correlations between differ-
ent conditions. First, a Student’s t test was first performed at the par-
ticipant level on data from different conditions at each time point,
and time points with p values exceeding a prior threshold of 0.05
were marked, and adjacent marked time points were identified as
clusters. In the topographical correlation analysis, as we posited a
directional hypothesis stating that prestimulus neural representation
would exhibit greater similarity to poststimulus neural representation
for standard stimuli and less similarity for deviant stimuli when prior
knowledge was learned, a one-tailed t test was used. In contrast, for
the decoding analysis and GFP analysis, where the objective was to
determine whether the decoded information or GFP could differenti-
ate between conditions, regardless of the specific direction, a two-
tailed t test was used. The sum of the t values in the cluster was con-
sidered as the cluster-level statistic. The data were then shuffled 1000
times between the two conditions. For each shuffle, the maximum
cluster statistic was used to construct a distribution of cluster-level
statistics, which was expected under the null hypothesis. The p values

4 • J. Neurosci., 0, 2023 • 00(00):000 Shen, Wu et al. · Prior Knowledge Uses Alpha and Neural Templates



were obtained by directly calculating the proportion of cluster statis-
tics that were more extreme than the original data. A p value of 0.001
was assigned when the original data were the most extreme. Finally,
cluster-level statistics were considered as significant only if the cluster
statistics exceeded the 95th percentile of the null hypothesis distribu-
tion (i.e., a¼ 0.05).

To assess the significance of the correlation coefficient between
prestimulus alpha power and poststimulus EEG activity, we con-
ducted a permutation test. First, we computed averaged correlation
coefficients by averaging the correlations within the alpha band (8–
13 Hz) across the entire poststimulus period (50–500ms) for each
participant. Subsequently, a group-level Student’s t test was per-
formed against a null hypothesis of zero correlation, and the result-
ing t statistics were considered as the observed test statistics. Next,
we generated 1000 permutations by randomly pairing prestimulus
alpha power from one channel with EEG activity from another
channel for each participant. For each permutation, we calculated
the t statistics using the same method as for the original data, creating a
distribution of statistic values under the null hypothesis. To determine the
significance, we calculated p values by comparing the observed t statistics
with the null distribution. Specifically, a p value of 0.001 was assigned
when the observed t statistics were the most extreme. Finally, we consid-
ered a statistic value significant only if it exceeded the 95th percentile of
the null hypothesis distribution (i.e., a¼ 0.05).

Data availability. All data and code are available at https://osf.io/
xhva5/. The data and code used in the study are in the public domain
for sharing or reuse. The data and code sharing policy adopted by us
meets the requirements of the School of Psychology, South China
Normal University and has been approved by the institutional ethics
committee.

Results
In the present study, similar pictures with and without hidden
Dalmatian or human faces were presented as standard and deviant
stimuli, respectively, in an oddball paradigm. Prior knowledge
about either the dog or the face was introduced in the middle of
the experiment. Pictures with prior knowledge were referred to as
instructed stimuli and otherwise as noninstructed stimuli. To
ensure the perception of the hidden object within the instructed
stimuli, participants were allowed to proceed in the experiment
only after confidently detecting the presence of the face or dog
and accurately identifying the location of its components. After
the experiment, participants were asked whether they consciously
perceived the hidden objects in the postinstruction session, and all
participants confirmed that they were able to perceive them.
Participants were asked to perform an irrelevant target detection
task (mean hit rate, 97.91% 6 1.64 SD, with all participants
achieving a hit rate of .90%), while the target stimuli were inde-
pendent of the presence or absence of a dog or face feature.

Prior knowledge helps to evoke visual mismatch responses
As the physical properties of the standard and deviant stimuli
were similar, it should be difficult to discriminate between them
in the absence of prior knowledge, whereas in the presence of
prior knowledge, it should be easy to discriminate between them
because the face or the dog only appeared in the standard stim-
uli but not in the deviant stimuli. To verify this, we analyzed
the visual mismatch response by calculating the GFP, which
not only reflects the overall electrophysiological activity in
response to the stimulus but also avoids bias caused by elec-
trode selection. Using the cluster-based method (see above,
Materials and Methods), we examined the presence of a visual
mismatch response by comparing the standard and deviant
stimuli separately for instructed and noninstructed conditions,
as well as for preinstruction and postinstruction sessions. In the

preinstruction session, no significant difference in GFP was
observed between the instructed and noninstructed conditions
(Fig. 2A). This suggests that the physical differences alone
between the standard and deviant stimuli did not generate a
visual mismatch response in the absence of prior knowledge. In
contrast, during the postinstruction session, we identified an
early mismatch response specifically in the instructed condi-
tion. A significant GFP difference emerged between the deviant
and standard conditions within the time interval of 91–142ms,
which was corrected for multiple comparisons using the clus-
ter-based method (p¼ 0.021; Fig. 2B). This finding indicates
that after receiving prior knowledge, participants exhibited a
robust mismatch response during this early time window, indi-
cating the involvement of prior knowledge in evoking the visual
mismatch response. No significant GFP cluster was observed in
the postinstruction session for the noninstructed condition,
supporting the notion that the visual mismatch response was
specific to the instructed stimuli. Furthermore, we examined
the topographical distribution of the event-related potential
(ERP) difference between the deviant and standard conditions
during the time interval of 91–142ms (Fig. 2C). The results
demonstrated that the ERP difference predominantly mani-
fested in the frontal and occipital channels for the instructed
stimuli in the postinstruction session.

To determine whether prior knowledge primarily influenced
the standard or deviant trials, we analyzed the poststimulus GFP
activity within the time interval of 91–142ms for both standard
and deviant trials in instructed and noninstructed conditions,
comparing the postinstruction session with the preinstruction
session (Fig. 2D). A two (instructed vs noninstructed) by two
(standard vs deviant) repeated-measures ANOVA on the differ-
ence in GFP signals revealed a significant interaction (F(1,21) ¼
5.06, p¼ 0.035). Further analysis demonstrated no significant
difference between instructed and noninstructed conditions
for deviant trials (t(21) ¼ 0.79, p¼ 0.44). However, significant
differences were observed for standard trials (t(21) ¼ 3.07,
p¼ 5.85� 10�3). These findings suggest that prior knowledge
primarily has an impact on the poststimulus signal in standard
trials, indicating that prior knowledge provides additional in-
formation for consciously perceiving the hidden object in the
standard stimuli.

Prior knowledge uses prestimulus alpha band oscillations to
carry the information about hidden objects
The clear effect of prior knowledge on electrophysiological activ-
ity indicates that our psychophysical manipulation was success-
ful. Next, we investigated the neural implementation of prior
knowledge before stimulus onset. As prestimulus neural activity
often takes the form of neural oscillations, we focused on the
relationship between prior knowledge and neural oscillations.
The working hypothesis is that if a particular neural oscillation
carries the information about the prior knowledge, then the neu-
ral representation of such neural oscillations should be similar to
the neural representation of the EEG activity during stimulus
processing. According to this hypothesis, for the preinstruction
session in the instructed condition, because no prior knowledge
was provided, the prestimulus neural representation should not
be similar to the poststimulus neural representation for both
standard and deviant stimuli. Conversely, during the postinstruc-
tion session of the instructed condition, the prestimulus neural
oscillations are expected to carry information about the prior
knowledge of the standard stimuli. This would lead to an
increased similarity between the prestimulus neural
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representation and the poststimulus neural representation for
standard stimuli. In contrast, as the deviant stimuli significantly
differ from the prior knowledge, a decreased similarity would
be observed for the deviant stimuli (Fig. 3A). For the nonin-
structed condition, there should be no representational simi-
larity effect because no prior knowledge was provided in
either the preinstruction or postinstruction sessions.

Specifically, the prestimulus power was first obtained for all
channels and frequencies (2–50Hz) for the time period from
�500 to 0ms relative to the stimulus onset. Accordingly, the post-
stimulus EEG activity was also obtained for each 100ms sliding
window from 50 to 500ms after the stimulus onset (see above,
Materials and Methods). The representational similarity between
the prestimulus power and poststimulus EEG activity was quanti-
fied using the correlation coefficient obtained from the topograph-
ical correlation analysis (Fig. 3B). A higher correlation coefficient
indicates a similar topographic representation between prestimu-
lus power and poststimulus EEG activity, whereas a lower correla-
tion coefficient indicates a different topographic representation.
Based on our assumptions about prior knowledge, for the
instructed condition, we predicted a difference in the correlation
coefficients between the standard and deviant stimulus conditions
in the postinstruction session, but not in the preinstruction session
(Fig. 3C). For the noninstructed condition, no difference in corre-
lation coefficients should be observed.

For the instructed stimuli, the results showed that the correla-
tion between prestimulus alpha band oscillatory power and post-
stimulus EEG activity from ;50 to 390ms was significantly
higher (cluster-based correction, p¼ 0.039) for the standard
stimulus condition than for the deviant stimulus condition in the
postinstruction session, but not in the preinstruction session
(Fig. 4A, top). To rule out possible confounding by the practice
effect, we performed the same contrast between the preinstruc-
tion and postinstruction sessions for the noninstructed stimuli. If
the observed representational similarity effect was caused by a
practice effect, then a comparable effect should also be observed
for the noninstructed stimuli in terms of the difference in corre-
lation coefficients. However, the results showed no such differ-
ence for the noninstructed stimuli (Fig. 4A, bottom).

To determine whether the representational similarity between
prestimulus power and poststimulus EEG activity was indeed
higher in the postinstruction session, we conducted a direct com-
parison of the correlation coefficient differences between the pre-
instruction and postinstruction sessions. Consistent with our
hypothesis, the analysis revealed a significantly larger difference
in the postinstruction session compared with the preinstruction
session for the instructed stimuli (cluster-based correction,
p¼ 0.023; Fig. 4B, top). In contrast, no significant differences in
correlation coefficient differences were observed for the nonin-
structed stimuli between the preinstruction and postinstruction

Figure 2. A, Comparison of the GFP between the standard and deviant stimuli in the instructed condition for the preinstruction and postinstruction sessions. B, Same as A but for the nonin-
structed condition. Significant time points are indicated with horizontal black bars (cluster-based corrected, p, 0.05). C, Topographic maps illustrating the average event-related potential dif-
ference between deviant and standard conditions during the time interval of interest (91–142 ms) for all conditions. D, Comparison of GFP differences between postinstruction and
preinstruction sessions for standard and deviant trials for instructed and noninstructed stimuli. Error bars represent 95% confidence intervals (Morey, 2008); n.s., p. 0.05, **p, 0.01.
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Figure 4. A, Differences in correlation coefficients between the standard and deviant stimulus conditions in the preinstruction and postinstruction sessions for the instructed (top) and nonin-
structed (bottom) stimuli. B, Contrasting the differences in correlation coefficients between postinstruction and preinstruction sessions for the instructed (top) and noninstructed (bottom) stim-
uli. C, Contrasting the difference in correlation coefficient changes between the postinstruction and preinstruction sessions for the instructed and noninstructed stimuli. The rows in the plots
indicate the time bins of the poststimulus EEG activity, and the columns indicate the frequencies of the prestimulus oscillatory power. Color values indicate the differences in correlation coeffi-
cients (A) or t statistics (B, C) of the correlation coefficient difference. Significant correlation coefficient differences or contrast of correlation coefficient differences are indicated by the black con-
tours (cluster-based correction, p , 0.05). D, The average correlation coefficient between the prestimulation alpha band oscillatory power (8–13 Hz) and poststimulation EEG activity (50–
500 ms). E, II for standard and deviant trials. Error bars represent 95% confidence intervals; n.s., p. 0.05, *p, 0.05, **p, 0.01.

Figure 3. A, The hypothesis on the neural representation of prior knowledge during the prestimulus period. For the instructed condition, as no prior knowledge was available in the preinstruction ses-
sion, the prestimulus neural activity should not be similar to the poststimulus neural activity for both standard and deviant stimuli. However, for the postinstruction session, persistent maintenance of prior
knowledge for standard stimuli in the brain during the prestimulus period would lead to an increased similarity between the prestimulus neural representation and the poststimulus neural representation
for standard stimuli. In contrast, because of the distinctiveness of the prior knowledge from the deviant stimuli, a decreased similarity would be observed for deviant stimuli. Note that the cue to the hid-
den object (shown in red) was shown for demonstration purposes only and did not actually appear in the experiment. B, A depiction of how the topographical correlation analysis was performed between
the prestimulus power and poststimulus EEG activity. Spearman correlations were computed over the channel dimension between prestimulus power at each frequency and poststimulus EEG activity at
each time window. C, The predicted correlation coefficients for the standard and deviant stimulus conditions in both preinstruction and postinstruction sessions.
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sessions (Fig. 4B, bottom). Furthermore, we examined the changes
in correlation coefficient differences between the postinstruction
and preinstruction sessions for both the instructed and nonin-
structed stimuli, resulting in the subtraction depicted in Figure 4C.
Notably, the analysis demonstrated that the differences in the
alpha band for the instructed stimuli were significantly larger than
those for the noninstructed stimuli (cluster-based correction,
p¼ 0.001; Fig. 4C).

Based on our hypothesis that prestimulus alpha band
activity may carry information about prior knowledge,
we further conducted statistical analyses on the averaged
correlation coefficients (Fig. 4D). These coefficients were
obtained by averaging the correlations within the alpha
band (8–13 Hz) across the entire poststimulus period (50–
500ms). Using a permutation method (see above, Materials
and Methods), we first assessed the significance of the cor-
relations. The analysis revealed significant correlations for
all conditions (all p values¼ 0.001), affirming the presence
of a relationship between prestimulus alpha power and poststimulus
EEG activity. To further investigate the differences in correlations
between prestimulus alpha power and poststimulus EEG activ-
ity in different conditions, we performed a two (instructed vs
noninstructed) by two (preinstruction vs postinstruction) by two
(standard vs deviant) ANOVA on the averaged correlation coeffi-
cients. Notably, the three-way interaction emerged as the sole sig-
nificant effect (F(1,21) ¼ 8.50, p¼ 8.28� 10�3). Further analysis
showed a significant two (preinstruction vs postinstruction) by two
(standard vs deviant) interaction effect for the instructed condition
(F(1,21) ¼ 5.03, p¼ 0.03), but not for the noninstructed condition
(F(1,21) ¼ 3.55, p¼ 0.07). A subsequent simple effect analysis of
the instructed condition revealed that the correlation coefficient
for the standard stimulus condition was significantly greater than
that for the deviant stimulus condition in the postinstruction ses-
sion (t(21) ¼ 2.20, p¼ 0.02), whereas no significant difference was
found in the preinstruction session (t(21) ¼ �1.03, p¼ 0.84).
Consistent with our hypothesis, these findings demonstrated that
the neural representation between prestimulus alpha band oscilla-
tory power and poststimulus EEG activity became more similar
when prior knowledge was provided, suggesting that alpha band
oscillations carry information about prior knowledge during the
prestimulus period.

To further evaluate the impact of prior knowledge on the rep-
resentational similarity in both standard and deviant trials, we
calculated the II (see above, Materials and Methods) for standard
and deviant trials. The II quantifies the contribution of prior
knowledge to changes in representational similarity, with posi-
tive values indicating an increase and negative values suggesting
a decrease. Our findings revealed a significant positive effect
of prior knowledge on representational similarity for standard
trials (t(21) ¼ 2.06, p¼ 0.026), indicating that prior knowledge

enhances the similarity between prestimulus alpha band oscilla-
tory power and poststimulus EEG activity. Additionally, we
observed a trend toward a negative effect of prior knowledge on
correlations in deviant trials (t(21) ¼ �1.67, p¼ 0.054), suggest-
ing that prior knowledge may lead to a decrease in representa-
tional similarity for deviant stimuli (Fig. 4E).

To address the potential influence of raw prestimulus alpha
band power on the correlation coefficients, we conducted addi-
tional analyses. Specifically, we computed the averaged prestimu-
lus power (�500–0ms) across all channels and frequencies (2–
50Hz) for both the instructed and noninstructed conditions in
the postinstruction session. Importantly, no significant differen-
ces were observed between the two conditions across all frequen-
cies (all p values . 0.05; Fig. 5A). Additionally, we specifically
examined the prestimulus alpha power (8–13Hz, �500–0ms)
for all channels in the instructed and noninstructed conditions
of the postinstruction session (Fig. 5B). Comparisons between
the two conditions revealed no significant differences across all
channels (all p values . 0.05; Fig. 5C), suggesting that the
observed results were not attributable to variations in alpha band
power.

Prior knowledge induces persistent neural templates
throughout the poststimulus period
Despite receiving prior knowledge about the hidden Dalmatian
dog or face stimuli only once during the instruction, our percep-
tual experience of these stimuli underwent a significant transfor-
mation throughout the postinstruction session. This observation
raises intriguing questions about the modulatory effects of prior
knowledge on neural activity and the resulting pronounced per-
ceptual effects. It is reasonable to hypothesize that prior knowl-
edge regarding the specific image content has the capacity to
induce alterations in the neural representations of these stimuli,
surpassing mere differentiation between standard and deviant
stimuli. To address this question, we used temporal generaliza-
tion, a time-resolved decoding method, to examine the differen-
ces in neural representations between the face and dog standard
stimuli during the preinstruction and postinstruction sessions. In
the preinstruction session, the neural representations primarily
differed based on physical appearance, with no influence of prior
knowledge. However, in the postinstruction session, both phys-
ical appearance and prior knowledge contributed to distinct
neural representations, as the participants were aware of the
stimulus content. Therefore, by comparing the differences in
neural representations between the preinstruction and postin-
struction sessions, we can uncover the impact of prior knowl-
edge on the brain.

Specifically, the classifiers were first trained for each subject at
each time point between the standard face and dog stimuli, using
the leave-one-out method for all trials in the preinstruction and

Figure 5. A, Comparison of the averaged prestimulus power across all channels for frequencies ranging from 2 to 50 Hz in the postinstruction session. No significant differences were
observed for any of the frequencies (all p values. 0.05, 2-tailed paired t test, uncorrected). B, Topographical distribution of prestimulus alpha band power for the instructed and noninstructed
conditions in the postinstruction session. C, Comparison of the prestimulus alpha band power between the instructed and noninstructed conditions across all channels. No significant differences
were found for any of the channels (all p values. 0.05, 2-tailed paired t test, uncorrected).
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postinstruction sessions. In this way, the classification relied
on the projections of neural activity in the high-dimensional
activation space into a single-dimensional space of neural rep-
resentation, which could maximally separate the neural pat-
terns between the face and dog stimuli regardless of the
session (Fig. 6A). Then, taking advantage of the temporal gen-
eralization method, the classifier trained on one time point
was applied on all time points, which allowed direct compari-
sons of the neural representations between different time
points (King and Dehaene, 2014). If the neural representation
at a time point is similar to the neural representation at the
trained time point, the trained classifier should perform well;
on the contrary, if the neural representation is not similar to
the neural representation at the trained time point, the trained
classifier should perform poorly. The performance of the clas-
sifier was quantified by the area under the receiver character-
istic curve (see above, Materials and Methods).

We applied the trained classifiers to trials in both the prein-
struction and postinstruction sessions. The results showed that
the face and dog stimuli could be successfully discriminated for
both sessions (Fig. 6B,C; cluster-based correction, p¼ 0.001 for
the preinstruction session, and p¼ 0.001 for the postinstruction
session). More importantly, for the postinstruction session, per-
sistent neural templates were found from ;200ms after the
stimulus onset to the end of the trial for classifiers trained on
data around 100ms after the stimulus onset (Fig. 6D; cluster-
based correction, p¼ 0.007). For demonstration purposes, these
generalized signals were further illustrated, for example, when
the classifier was trained 91–142ms after stimulus onset (Fig.
6E); the decoding performance of the neural signals from 200ms
after stimulus onset to the end of the trial was better in the post-
instruction session compared with the preinstruction session.
Please note that in the above GFP analysis, 91–142ms after stim-
ulus onset is the time window for the visual mismatch response,
which is sensitive to the difference between the deviant stimuli
(not involved in the current analysis) and the standard stimuli in
the postinstruction session. These results suggest that prior
knowledge influenced our perception of the hidden Dalmatian
dog and face stimuli by generating persistent neural templates

that resemble those evoked during the time window of the visual
mismatch response.

To exclude the potential confounds caused by the practice
effect, for both preinstruction and postinstruction sessions we di-
vided the trials into two halves according to the order of their
occurrence and recalculated the decoding performance. If the
observed effects were caused by the practice effect, a gradual
change in decoding performance should be observed between
the different parts. On the other hand, if the observed effects
were caused by the prior knowledge alone, a sudden change in
decoding performance should be observed immediately after the
instruction. Using the same 91–142ms window as above, we
found little difference in decoding performance between the first
and second halves within one session but a substantial difference
between the two sessions (Fig. 7A). The average decoding per-
formance during the entire poststimulus period also indicated no
significant temporal generalization effect in either part during
the preinstruction session (t(21) ¼ 1.52, p¼ 0.14 for the first half,
t(21) ¼ 1.77, p¼ 0.09 for the second half; Fig. 7B). On the other
hand, significant temporal generalization effects were found in
both parts during the postinstruction sessions (t(21) ¼ 3.26,
p¼ 3.76� 10�3 for the first half, t(21) ¼ 4.01, p¼ 6.32� 10�4 for
the second half). Then, the average decoding performance was
submitted to a two (preinstruction vs postinstruction) by two
(first half vs second half) repeated-measures ANOVA. The main
effect between the preinstruction and postinstruction was the
only significant effect (F(1,21) ¼ 8.38, p¼ 8.65� 10�3; Fig. 7B).
Neither the main effect between the first and second half of one
session (F(1,21) ¼ 0.14, p¼ 0.71), nor the two-way interaction
(F(1,21) ¼ 0.23, p¼ 0.64), was significant, indicating that effect of
practice should not have resulted in the observed effect on
decoding performance.

Discussion
In the current study, we investigated the retention of prior
knowledge and its effect on conscious perception by revealing
the objects hidden inside seemingly meaningless pictures in a
visual oddball paradigm (Fig. 1). By comparing the global field

Figure 6. A, Hypothetical two-dimensional activation spaces representing the EEG signals of human faces and dogs. Decoding relies on the projection of neural activity in the high-dimensional activa-
tion space onto a single-dimensional discriminative axis, regardless of the sessions. Decision boundaries placed along the axes allow for classification between face and dog stimuli. The higher decoding
performance indicates a clearer separation of neural representations. B, Temporal generalization matrices for the preinstruction session. C, Temporal generalized matrices for the postinstruction session. D,
Temporal generalization matrices for the differential contrast between the preinstruction and postinstruction sessions. Rows in the pictures are the time points at which the classifier was trained, and the
columns are the time points at which the classifier was tested. Color values indicate decoding performance in terms of area under the curve (AUC; B, C) or t statistics of AUC difference (D). Significant
decoding performance is indicated by the black contours (cluster-based correction, p, 0.05). E, Decoding performance over time when the training time range is set from 91 to 142ms after stimulus
onset. For demonstration purposes, significant generalization time points in the preinstruction session are marked by horizontal red bars, those in the postinstruction session by horizontal blue bars, and
the significant difference between them by horizontal gray bars (uncorrected, p, 0.05). Shaded areas represent 95% confidence intervals. Dashed lines indicate the stimulus onset.
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power, we found that the visual mismatch response emerged only
after the hidden object was revealed, confirming that our psycho-
physical manipulations to introduce prior knowledge were suc-
cessful (Fig. 2). To investigate how prior knowledge is maintained
during the prestimulus period, we used a multivariate method
(Fig. 3) and found that prior knowledge uses alpha band oscilla-
tions to convey information about the hidden object (Fig. 4).
Furthermore, when we compared neural representations between
consciously seen and unseen stimuli, we found that prior knowl-
edge evoked a persistent neural template, similar to the neural rep-
resentations evoked in the early stages of visual processing,
allowing for the conscious perception of hidden objects (Fig. 6).

Accumulating evidence from EEG, magnetoencephalography,
and intracranial recordings from animal and human studies con-
sistently suggested that alpha band oscillations are closely associ-
ated with the top-down processes in the brain (Klimesch, 2012).
However, it remains unclear how the top-down processes use
alpha oscillations. On the one hand, a large literature found that
top-down processes led to desynchronization of the alpha oscilla-
tions. For example, attention reduced alpha activity contralateral
to the attended location in both the visual system (Sauseng et al.,
2005; Thut et al., 2006; Worden et al., 2000) and the somatosen-
sory system (Haegens et al., 2011). Attention toward one modal-
ity also reduced alpha activity in brain regions that process
information about that modality (Mazaheri et al., 2014). In addi-
tion to attention, temporal expectation has also been shown to
reduce alpha activity (Rohenkohl and Nobre, 2011). On the other
hand, it has also been reported that top-down modulation can
enhance alpha oscillations. For example, in macaque visual cor-
tex, it has been observed that alpha band oscillations propagate
in the feedback direction when the animal was able to detect an
orientation-defined object in a figure-ground segregation task
(van Kerkoerle et al., 2014). Enhanced alpha band oscillations
were also found in the visual areas of cats, monkeys, and humans
when the stimuli were expected or attended to (Bastos et al.,
2020; Chatila et al., 1992; Mayer et al., 2016; J. Mo et al., 2011;
Samaha et al., 2018; Stenner et al., 2014). The apparent discrep-
ancy between top-down effects on alpha band oscillations in dif-
ferent studies suggests that the top-down control can both
enhance and attenuate the alpha band oscillations in different
brain regions at the same time, depending on their location and
function (Sauseng et al., 2005; Worden et al., 2000). In the cur-
rent study, rather than an overall univariate enhancement or
attenuation of alpha band oscillations, the results show that prior
knowledge uses prestimulus alpha band oscillations in a multi-
variate manner; that is, there is a similar topographic pattern
between prestimulus alpha band oscillations and poststimulus

EEG activity. Together with recent studies on the neural repre-
sentation of alpha band oscillations (Samaha et al., 2016; Voytek
et al., 2017; de Vries et al., 2021), the current results provide
insight into the role of prestimulus alpha oscillations from a mul-
tivariate perspective. However, because of the experimental
design limitations of our study, which only revealed either the
hidden dog or the hidden face but not both, we were unable to
directly examine whether and how the prestimulus alpha power
carrying prior knowledge of the dog differs from the prestimulus
alpha power carrying prior knowledge of the face. This intriguing
question could serve as a research topic for future investigations.

Once acquired, prior knowledge alters our perception and
produces a persistent conscious perception, so it is conceivable
that the neural representation of such experience persists in
ongoing brain states. Several studies have provided evidence for
this possibility. For example, by comparing the consciously seen
and unseen stimuli, previous studies have reported that con-
scious perception is associated with a sustained neural activity in
different brain areas (Li et al., 2014), resulting in a stronger neu-
ral representation of the stimuli (King et al., 2016; Salti et al.,
2015). In the current study, however, instead of a stronger neural
representation, we found persistent neural templates that resem-
ble the neural representations evoked in the early stages of visual
processing. One possible explanation for the different results is
that previous studies relied on subjects’ responses to determine
whether the stimuli were consciously perceived, which involves
neural correlates for both conscious experience and postcon-
scious processes (Aru et al., 2012), whereas in the current study,
because conscious perception was task irrelevant, the persistent
neural templates may reflect neural correlates for conscious
experience only. In addition, very similar persistent neural
templates were found in an MEG study of object recognition,
and it was suggested that such persistent neural representa-
tions may store the results of a particular neural processing
stage for later use (Cichy et al., 2014). It is possible that these
persistent neural templates maintain the conscious perception
of the hidden objects for further processing when needed,
similar to recent findings that prior expectations induce neu-
ral templates to improve corresponding behavioral perform-
ance (Kok et al., 2017).

As attention to the location of the corresponding hidden
object may be enhanced because of the acquisition of specific
prior knowledge, one can assume that attention (which has
been extensively studied) gives rise to the observed effects
between preinstruction and postinstruction sessions or between
standard and deviant stimuli. However, in the current study,
our experimental design and results suggest that this is highly

Figure 7. A, Decoding performance over time when data from 91 to 142 ms after stimulus onset were used for training. For both preinstruction and postinstruction sessions, the test trials
were divided into the two parts (first half and the second half), respectively, according to their order of occurrence. If the observed effects on decoding performance were caused by the practice
effect, then a gradual change should be observed between the different parts. B, Average decoding performance during the whole poststimulus period (0–1750ms after stimulus onset) for dif-
ferent parts when the classifiers were trained on data from 91 to 142 ms after stimulus onset. Error bars represent 95% confidence intervals; n.s. p. 0.05, ** p, 0.01.

10 • J. Neurosci., 0, 2023 • 00(00):000 Shen, Wu et al. · Prior Knowledge Uses Alpha and Neural Templates



unlikely. For the experimental design, to minimize the effects of
attention, we used a task-independent oddball paradigm in a
fast-learning experiment. In such a paradigm, because the
stimuli in the preinstruction and postinstruction sessions or
in the standard and deviant conditions were exactly or nearly
identical, it is unlikely the observed effects were influenced by
the bottom-up attention. Moreover, revealing hidden objects
between the preinstruction and postinstruction sessions could
not improve the performance on the experimental task; that
is, it is task irrelevant, and the sequence of standard and devi-
ant stimuli was randomized. Therefore, top-down attention
should be similar across different conditions, at least in the
prestimulus period. In terms of the experimental results,
effects induced by prior knowledge appeared fairly early in the
poststimulus period; for example, the observed differences in
representational similarity began ;50ms after stimulus onset,
and the observed persistent multivariate patterns resemble neu-
ral representation from 91 to 142ms after stimulus onset as the
effect of attention is expected to manifest later (e.g., N2pc, P300),
it is unlikely that prior knowledge affects the brain through post-
stimulus attentional mechanisms. Together, because the experi-
mental design ensured that the prestimulus attention was similar
across different conditions, and the observed effects were too
early for poststimulus attentional mechanisms, the observed
effect should directly reflect the influence of prior knowledge
rather than the modulation of attention.

In summary, the present study aimed to investigate how prior
knowledge influences conscious perception. Our findings pro-
vided direct evidence that prior knowledge uses prestimulus
alpha oscillations to carry the information about the hidden
objects in a multivariant manner. Furthermore, prior knowledge
persistently influences conscious perception in the poststimulus
period by inducing specific neural representations that resemble
the early stages of visual processing, which may be a key factor in
conscious perception.
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